
◂ ● ▸ ?
Bugs and Errors

Flaws in computer programs are usually called bugs. It makes programmers
feel good to imagine them as little things that just happen to crawl into our
work. In reality, of course, we put them there ourselves.

If a program is crystallized thought, we can roughly categorize bugs into those
caused by the thoughts being confused and those caused by mistakes
introduced while converting a thought to code. The former type is generally
harder to diagnose and fix than the latter.

Language

Many mistakes could be pointed out to us automatically by the computer if it
knew enough about what we’re trying to do. But here, JavaScript’s looseness
is a hindrance. Its concept of bindings and properties is vague enough that it
will rarely catch typos before actually running the program. Even then, it

Debugging is twice as hard as writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by definition, not smart enough to
debug it.”

“

Brian Kernighan and P.J. Plauger, The Elements of Programming Style—

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 1/19

https://eloquentjavascript.net/07_robot.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/09_regexp.html

allows you to do some clearly nonsensical things without complaint, such as
computing true * "monkey" .

There are some things that JavaScript does complain about. Writing a
program that does not follow the language’s grammar will immediately make
the computer complain. Other things, such as calling something that’s not a
function or looking up a property on an undefined value, will cause an error to
be reported when the program tries to perform the action.

Often, however, your nonsense computation will merely produce NaN (not a
number) or an undefined value, while the program happily continues,
convinced that it’s doing something meaningful. The mistake will manifest
itself only later, after the bogus value has traveled through several functions.
It might not trigger an error at all, but silently cause the program’s output to
be wrong. Finding the source of such problems can be difficult.

The process of finding mistakes—bugs—in programs is called debugging.

Strict mode

JavaScript can be made a little stricter by enabling strict mode. This can done
by putting the string "use strict" at the top of a file or a function body.
Here’s an example:

function canYouSpotTheProblem() {

 "use strict";
 for (counter = 0; counter < 10; counter++) {
 console.log("Happy happy");

 }
}

canYouSpotTheProblem();

// → ReferenceError: counter is not defined

Code inside classes and modules (which we will discuss in Chapter 10) is
automatically strict. The old non-strict behavior still exists only because some
old code might depend on it, and the language designers work hard to avoid
breaking any existing programs.

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 2/19

https://eloquentjavascript.net/10_modules.html

Normally, when you forget to put let in front of your binding, as with
counter in the example, JavaScript quietly creates a global binding and uses
that. In strict mode, an error is reported instead. This is very helpful. It should
be noted, though, that this doesn’t work when the binding in question already
exists somewhere in scope. In that case, the loop will still quietly overwrite the
value of the binding.

Another change in strict mode is that the this binding holds the value
undefined in functions that are not called as methods. When making such a
call outside of strict mode, this refers to the global scope object, which is an
object whose properties are the global bindings. So if you accidentally call a
method or constructor incorrectly in strict mode, JavaScript will produce an
error as soon as it tries to read something from this , rather than happily
writing to the global scope.

For example, consider the following code, which calls a constructor function
without the new keyword so that its this will not refer to a newly constructed
object:

function Person(name) { this.name = name; }
let ferdinand = Person("Ferdinand"); // oops

console.log(name);
// → Ferdinand

The bogus call to Person succeeded, but returned an undefined value and
created the global binding name . In strict mode, the result is different.

"use strict";
function Person(name) { this.name = name; }

let ferdinand = Person("Ferdinand"); // forgot new
// → TypeError: Cannot set property 'name' of undefined

We are immediately told that something is wrong. This is helpful.

Fortunately, constructors created with the class notation will always
complain if they are called without new , making this less of a problem even in
non-strict mode.

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 3/19

Strict mode does a few more things. It disallows giving a function multiple
parameters with the same name and removes certain problematic language
features entirely (such as the with statement, which is so wrong it is not
further discussed in this book).

In short, putting "use strict" at the top of your program rarely hurts and
might help you spot a problem.

Types

Some languages want to know the types of all your bindings and expressions
before even running a program. They will tell you right away when a type is
used in an inconsistent way. JavaScript considers types only when actually
running the program, and even there often tries to implicitly convert values to
the type it expects, so it’s not much help.

Still, types provide a useful framework for talking about programs. A lot of
mistakes come from being confused about the kind of value that goes into or
comes out of a function. If you have that information written down, you’re
less likely to get confused.

You could add a comment like the following before the findRoute function
from the previous chapter to describe its type:

// (graph: Object, from: string, to: string) => string[]

function findRoute(graph, from, to) {
 // ...
}

There are a number of different conventions for annotating JavaScript
programs with types.

One thing about types is that they need to introduce their own complexity to
be able to describe enough code to be useful. What do you think would be the
type of the randomPick function that returns a random element from an
array? You’d need to introduce a type variable, T, which can stand in for any
type, so that you can give randomPick a type like (T[]) → T (function from
an array of Ts to a T).

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 4/19

When the types of a program are known, it is possible for the computer to
check them for you, pointing out mistakes before the program is run. There
are several JavaScript dialects that add types to the language and check them.
The most popular one is called TypeScript. If you are interested in adding
more rigor to your programs, I recommend you give it a try.

In this book, we’ll continue using raw, dangerous, untyped JavaScript code.

Testing

If the language is not going to do much to help us find mistakes, we’ll have to
find them the hard way: by running the program and seeing whether it does
the right thing.

Doing this by hand, again and again, is a really bad idea. Not only is it
annoying, it also tends to be ineffective since it takes too much time to
exhaustively test everything every time you make a change.

Computers are good at repetitive tasks, and testing is the ideal repetitive task.
Automated testing is the process of writing a program that tests another
program. Writing tests is a bit more work than testing manually, but once
you’ve done it, you gain a kind of superpower: it takes you only a few seconds
to verify that your program still behaves properly in all the situations you
wrote tests for. When you break something, you’ll immediately notice rather
than randomly running into it at some later time.

Tests usually take the form of little labeled programs that verify some aspect
of your code. For example, a set of tests for the (standard, probably already
tested by someone else) toUpperCase method might look like this:

function test(label, body) {

 if (!body()) console.log(`Failed: ${label}`);
}

test("convert Latin text to uppercase", () => {
 return "hello".toUpperCase() == "HELLO";
});
test("convert Greek text to uppercase", () => {

 return "Χαίρετε".toUpperCase() == "ΧΑΊΡΕΤΕ";
});

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 5/19

https://www.typescriptlang.org/

test("don't convert case-less characters", () => {
 return "مرحبا".toUpperCase() == "مرحبا";
});

Writing tests like this tends to produce rather repetitive, awkward code.
Fortunately, there exist pieces of software that help you build and run
collections of tests (test suites) by providing a language (in the form of
functions and methods) suited to expressing tests and by outputting
informative information when a test fails. These are usually called test
runners.

Some code is easier to test than other code. Generally, the more external
objects that the code interacts with, the harder it is to set up the context in
which to test it. The style of programming shown in the previous chapter,
which uses self-contained persistent values rather than changing objects,
tends to be easy to test.

Debugging

Once you notice there is something wrong with your program because it
misbehaves or produces errors, the next step is to figure out what the
problem is.

Sometimes it is obvious. The error message will point at a specific line of your
program, and if you look at the error description and that line of code, you can
often see the problem.

But not always. Sometimes the line that triggered the problem is simply the
first place where a flaky value produced elsewhere gets used in an invalid way.
If you have been solving the exercises in earlier chapters, you will probably
have already experienced such situations.

The following example program tries to convert a whole number to a string in
a given base (decimal, binary, and so on) by repeatedly picking out the last
digit and then dividing the number to get rid of this digit. But the strange
output that it currently produces suggests that it has a bug.

function numberToString(n, base = 10) {

 let result = "", sign = "";

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 6/19

https://eloquentjavascript.net/07_robot.html

 if (n < 0) {
 sign = "-";

 n = -n;
 }
 do {
 result = String(n % base) + result;

 n /= base;
 } while (n > 0);
 return sign + result;

}
console.log(numberToString(13, 10));
// → 1.5e-3231.3e-3221.3e-3211.3e-3201.3e-3191.3e-3181.3…

Even if you see the problem already, pretend for a moment that you don’t. We
know that our program is malfunctioning, and we want to find out why.

This is where you must resist the urge to start making random changes to the
code to see whether that makes it better. Instead, think. Analyze what is
happening and come up with a theory of why it might be happening. Then
make additional observations to test this theory—or, if you don’t yet have a
theory, make additional observations to help you come up with one.

Putting a few strategic console.log calls into the program is a good way to
get additional information about what the program is doing. In this case, we
want n to take the values 13 , 1 , and then 0 . Let’s write out its value at the
start of the loop.

13
1.3
0.13
0.013

…
1.5e-323

Right. Dividing 13 by 10 does not produce a whole number. Instead of n /=
base , what we actually want is n = Math.floor(n / base) so that the
number is properly “shifted” to the right.

An alternative to using console.log to peek into the program’s behavior is to
use the debugger capabilities of your browser. Browsers come with the ability

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 7/19

to set a breakpoint on a specific line of your code. When the execution of the
program reaches a line with a breakpoint, it is paused, and you can inspect the
values of bindings at that point. I won’t go into details, as debuggers differ
from browser to browser, but look in your browser’s developer tools or search
the web for instructions.

Another way to set a breakpoint is to include a debugger statement
(consisting simply of that keyword) in your program. If the developer tools of
your browser are active, the program will pause whenever it reaches such a
statement.

Error propagation

Not all problems can be prevented by the programmer, unfortunately. If your
program communicates with the outside world in any way, it is possible to get
malformed input, to become overloaded with work, or to have the network
fail.

If you’re programming only for yourself, you can afford to just ignore such
problems until they occur. But if you build something that is going to be used
by anybody else, you usually want the program to do better than just crash.
Sometimes the right thing to do is take the bad input in stride and continue
running. In other cases, it is better to report to the user what went wrong and
then give up. In either situation the program has to actively do something in
response to the problem.

Say you have a function promptNumber that asks the user for a number and
returns it. What should it return if the user inputs “orange”?

One option is to make it return a special value. Common choices for such
values are null , undefined , or -1 .

function promptNumber(question) {

 let result = Number(prompt(question));
 if (Number.isNaN(result)) return null;
 else return result;

}

console.log(promptNumber("How many trees do you see?"));

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 8/19

Now any code that calls promptNumber must check whether an actual number
was read and, failing that, must somehow recover—maybe by asking again or
by filling in a default value. Or it could again return a special value to its caller
to indicate that it failed to do what it was asked.

In many situations, mostly when errors are common and the caller should be
explicitly taking them into account, returning a special value is a good way to
indicate an error. It does, however, have its downsides. First, what if the
function can already return every possible kind of value? In such a function,
you’ll have to do something like wrap the result in an object to be able to
distinguish success from failure, the way the next method on the iterator
interface does.

function lastElement(array) {
 if (array.length == 0) {

 return {failed: true};
 } else {
 return {value: array[array.length - 1]};
 }

}

The second issue with returning special values is that it can lead to awkward
code. If a piece of code calls promptNumber 10 times, it has to check 10 times
whether null was returned. If its response to finding null is to simply
return null itself, callers of the function will in turn have to check for it, and
so on.

Exceptions

When a function cannot proceed normally, what we would often like to do is
just stop what we are doing and immediately jump to a place that knows how
to handle the problem. This is what exception handling does.

Exceptions are a mechanism that makes it possible for code that runs into a
problem to raise (or throw) an exception. An exception can be any value.
Raising one somewhat resembles a super-charged return from a function: it
jumps out of not just the current function but also its callers, all the way down
to the first call that started the current execution. This is called unwinding the
stack. You may remember the stack of function calls mentioned in Chapter 3.

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 9/19

https://eloquentjavascript.net/03_functions.html#stack

An exception zooms down this stack, throwing away all the call contexts it
encounters.

If exceptions always zoomed right down to the bottom of the stack, they
would not be of much use. They’d just provide a novel way to blow up your
program. Their power lies in the fact that you can set “obstacles” along the
stack to catch the exception as it is zooming down. Once you’ve caught an
exception, you can do something with it to address the problem and then
continue to run the program.

Here’s an example:

function promptDirection(question) {
 let result = prompt(question);

 if (result.toLowerCase() == "left") return "L";
 if (result.toLowerCase() == "right") return "R";
 throw new Error("Invalid direction: " + result);
}

function look() {
 if (promptDirection("Which way?") == "L") {

 return "a house";
 } else {
 return "two angry bears";

 }
}

try {

 console.log("You see", look());
} catch (error) {
 console.log("Something went wrong: " + error);

}

The throw keyword is used to raise an exception. Catching one is done by
wrapping a piece of code in a try block, followed by the keyword catch .
When the code in the try block causes an exception to be raised, the catch
block is evaluated, with the name in parentheses bound to the exception
value. After the catch block finishes—or if the try block finishes without
problems—the program proceeds beneath the entire try/catch statement.

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 10/19

In this case, we used the Error constructor to create our exception value.
This is a standard JavaScript constructor that creates an object with a
message property. Instances of Error also gather information about the call
stack that existed when the exception was created, a so-called stack trace.
This information is stored in the stack property and can be helpful when
trying to debug a problem: it tells us the function where the problem occurred
and which functions made the failing call.

Note that the look function completely ignores the possibility that
promptDirection might go wrong. This is the big advantage of exceptions:
error-handling code is necessary only at the point where the error occurs and
at the point where it is handled. The functions in between can forget all about
it.

Well, almost...

Cleaning up after exceptions

The effect of an exception is another kind of control flow. Every action that
might cause an exception, which is pretty much every function call and
property access, might cause control to suddenly leave your code.

This means when code has several side effects, even if its “regular” control
flow looks like they’ll always all happen, an exception might prevent some of
them from taking place.

Here is some really bad banking code:

const accounts = {

 a: 100,
 b: 0,
 c: 20

};

function getAccount() {
 let accountName = prompt("Enter an account name");

 if (!Object.hasOwn(accounts, accountName)) {
 throw new Error(`No such account: ${accountName}`);
 }

 return accountName;

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 11/19

}

function transfer(from, amount) {
 if (accounts[from] < amount) return;
 accounts[from] -= amount;
 accounts[getAccount()] += amount;

}

The transfer function transfers a sum of money from a given account to
another, asking for the name of the other account in the process. If given an
invalid account name, getAccount throws an exception.

But transfer first removes the money from the account and then calls
getAccount before it adds it to another account. If it is broken off by an
exception at that point, it’ll just make the money disappear.

That code could have been written a little more intelligently, for example by
calling getAccount before it starts moving money around. But often
problems like this occur in more subtle ways. Even functions that don’t look
like they will throw an exception might do so in exceptional circumstances or
when they contain a programmer mistake.

One way to address this is to use fewer side effects. Again, a programming
style that computes new values instead of changing existing data helps. If a
piece of code stops running in the middle of creating a new value, no existing
data structures were damaged, making it easier to recover.

Since that isn’t always practical, try statements have another feature: they
may be followed by a finally block either instead of or in addition to a
catch block. A finally block says “no matter what happens, run this code
after trying to run the code in the try block.”

function transfer(from, amount) {
 if (accounts[from] < amount) return;

 let progress = 0;
 try {
 accounts[from] -= amount;

 progress = 1;
 accounts[getAccount()] += amount;
 progress = 2;

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 12/19

 } finally {
 if (progress == 1) {

 accounts[from] += amount;
 }
 }
}

This version of the function tracks its progress, and if, when leaving, it notices
that it was aborted at a point where it had created an inconsistent program
state, it repairs the damage it did.

Note that even though the finally code is run when an exception is thrown
in the try block, it does not interfere with the exception. After the finally
block runs, the stack continues unwinding.

Writing programs that operate reliably even when exceptions pop up in
unexpected places is hard. Many people simply don’t bother, and because
exceptions are typically reserved for exceptional circumstances, the problem
may occur so rarely that it is never even noticed. Whether that is a good thing
or a really bad thing depends on how much damage the software will do when
it fails.

Selective catching

When an exception makes it all the way to the bottom of the stack without
being caught, it gets handled by the environment. What this means differs
between environments. In browsers, a description of the error typically gets
written to the JavaScript console (reachable through the browser’s Tools or
Developer menu). Node.js, the browserless JavaScript environment we will
discuss in Chapter 20, is more careful about data corruption. It aborts the
whole process when an unhandled exception occurs.

For programmer mistakes, just letting the error go through is often the best
you can do. An unhandled exception is a reasonable way to signal a broken
program, and the JavaScript console will, on modern browsers, provide you
with some information about which function calls were on the stack when the
problem occurred.

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 13/19

https://eloquentjavascript.net/20_node.html

For problems that are expected to happen during routine use, crashing with
an unhandled exception is a terrible strategy.

Invalid uses of the language, such as referencing a nonexistent binding,
looking up a property on null , or calling something that’s not a function, will
also result in exceptions being raised. Such exceptions can also be caught.

When a catch body is entered, all we know is that something in our try
body caused an exception. But we don’t know what did or which exception it
caused.

JavaScript (in a rather glaring omission) doesn’t provide direct support for
selectively catching exceptions: either you catch them all or you don’t catch
any. This makes it tempting to assume that the exception you get is the one
you were thinking about when you wrote the catch block.

But it might not be. Some other assumption might be violated, or you might
have introduced a bug that is causing an exception. Here is an example that
attempts to keep on calling promptDirection until it gets a valid answer:

for (;;) {
 try {

 let dir = promtDirection("Where?"); // ← typo!
 console.log("You chose ", dir);
 break;
 } catch (e) {

 console.log("Not a valid direction. Try again.");
 }
}

The for (;;) construct is a way to intentionally create a loop that doesn’t
terminate on its own. We break out of the loop only when a valid direction is
given. Unfortunately, we misspelled promptDirection , which will result in
an “undefined variable” error. Because the catch block completely ignores its
exception value (e), assuming it knows what the problem is, it wrongly treats
the binding error as indicating bad input. Not only does this cause an infinite
loop, it “buries” the useful error message about the misspelled binding.

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 14/19

As a general rule, don’t blanket-catch exceptions unless it is for the purpose of
“routing” them somewhere—for example, over the network to tell another
system that our program crashed. And even then, think carefully about how
you might be hiding information.

We want to catch a specific kind of exception. We can do this by checking in
the catch block whether the exception we got is the one we are interested in,
and if not, rethrow it. But how do we recognize an exception?

We could compare its message property against the error message we happen
to expect. But that’s a shaky way to write code—we’d be using information
that’s intended for human consumption (the message) to make a
programmatic decision. As soon as someone changes (or translates) the
message, the code will stop working.

Rather, let’s define a new type of error and use instanceof to identify it.

class InputError extends Error {}

function promptDirection(question) {
 let result = prompt(question);
 if (result.toLowerCase() == "left") return "L";
 if (result.toLowerCase() == "right") return "R";

 throw new InputError("Invalid direction: " + result);
}

The new error class extends Error . It doesn’t define its own constructor,
which means that it inherits the Error constructor, which expects a string
message as argument. In fact, it doesn’t define anything at all—the class is
empty. InputError objects behave like Error objects, except that they have
a different class by which we can recognize them.

Now the loop can catch these more carefully.

for (;;) {

 try {
 let dir = promptDirection("Where?");
 console.log("You chose ", dir);

 break;
 } catch (e) {

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 15/19

 if (e instanceof InputError) {
 console.log("Not a valid direction. Try again.");

 } else {
 throw e;
 }
 }

}

This will catch only instances of InputError and let unrelated exceptions
through. If you reintroduce the typo, the undefined binding error will be
properly reported.

Assertions

Assertions are checks inside a program that verify that something is the way it
is supposed to be. They are used not to handle situations that can come up in
normal operation but to find programmer mistakes.

If, for example, firstElement is described as a function that should never be
called on empty arrays, we might write it like this:

function firstElement(array) {

 if (array.length == 0) {
 throw new Error("firstElement called with []");
 }

 return array[0];
}

Now, instead of silently returning undefined (which you get when reading an
array property that does not exist), this will loudly blow up your program as
soon as you misuse it. This makes it less likely for such mistakes to go
unnoticed and easier to find their cause when they occur.

I do not recommend trying to write assertions for every possible kind of bad
input. That’d be a lot of work and would lead to very noisy code. You’ll want to
reserve them for mistakes that are easy to make (or that you find yourself
making).

Summary

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 16/19

An important part of programming is finding, diagnosing, and fixing bugs.
Problems can become easier to notice if you have an automated test suite or
add assertions to your programs.

Problems caused by factors outside the program’s control should usually be
actively planned for. Sometimes, when the problem can be handled locally,
special return values are a good way to track them. Otherwise, exceptions may
be preferable.

Throwing an exception causes the call stack to be unwound until the next
enclosing try/catch block or until the bottom of the stack. The exception
value will be given to the catch block that catches it, which should verify that
it is actually the expected kind of exception and then do something with it. To
help address the unpredictable control flow caused by exceptions, finally
blocks can be used to ensure that a piece of code always runs when a block
finishes.

Exercises

Retry

Say you have a function primitiveMultiply that in 20 percent of cases
multiplies two numbers and in the other 80 percent of cases raises an
exception of type MultiplicatorUnitFailure . Write a function that wraps
this clunky function and just keeps trying until a call succeeds, after which it
returns the result.

Make sure you handle only the exceptions you are trying to handle.

class MultiplicatorUnitFailure extends Error {}

function primitiveMultiply(a, b) {
 if (Math.random() < 0.2) {

 return a * b;
 } else {
 throw new MultiplicatorUnitFailure("Klunk");
 }

}

function reliableMultiply(a, b) {

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 17/19

 // Your code here.
}

console.log(reliableMultiply(8, 8));
// → 64

Display hints...

The locked box

Consider the following (rather contrived) object:

const box = new class {

 locked = true;
 #content = [];

 unlock() { this.locked = false; }
 lock() { this.locked = true; }
 get content() {

 if (this.locked) throw new Error("Locked!");
 return this.#content;
 }
};

It is a box with a lock. There is an array in the box, but you can get at it only
when the box is unlocked.

Write a function called withBoxUnlocked that takes a function value as
argument, unlocks the box, runs the function, and then ensures that the box is
locked again before returning, regardless of whether the argument function
returned normally or threw an exception.

const box = new class {
 locked = true;
 #content = [];

 unlock() { this.locked = false; }
 lock() { this.locked = true; }

 get content() {
 if (this.locked) throw new Error("Locked!");
 return this.#content;
 }

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 18/19

};

function withBoxUnlocked(body) {
 // Your code here.
}

withBoxUnlocked(() => {
 box.content.push("gold piece");
});

try {
 withBoxUnlocked(() => {

 throw new Error("Pirates on the horizon! Abort!");
 });
} catch (e) {
 console.log("Error raised: " + e);

}
console.log(box.locked);
// → true

For extra points, make sure that if you call withBoxUnlocked when the box is
already unlocked, the box stays unlocked.

Display hints...
◂ ● ▸ ?

27/06/2024, 18:45 Bugs and Errors :: Eloquent JavaScript

https://eloquentjavascript.net/08_error.html 19/19

https://eloquentjavascript.net/07_robot.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/09_regexp.html

