
◂ ● ▸ ?
Project: A Robot

In “project” chapters, I’ll stop pummeling you with new theory for a brief
moment, and instead we’ll work through a program together. Theory is
necessary to learn to program, but reading and understanding actual
programs is just as important.

Our project in this chapter is to build an automaton, a little program that
performs a task in a virtual world. Our automaton will be a mail-delivery
robot picking up and dropping off parcels.

Meadowfield

The village of Meadowfield isn’t very big. It consists of 11 places with 14 roads
between them. It can be described with this array of roads:

const roads = [
 "Alice's House-Bob's House", "Alice's House-Cabin",

The question of whether Machines Can Think [...] is about as relevant as the question
of whether Submarines Can Swim.”

“

Edsger Dijkstra, The Threats to Computing Science—

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 1/14

https://eloquentjavascript.net/06_object.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/08_error.html

 "Alice's House-Post Office", "Bob's House-Town Hall",
 "Daria's House-Ernie's House", "Daria's House-Town Hall",

 "Ernie's House-Grete's House", "Grete's House-Farm",
 "Grete's House-Shop", "Marketplace-Farm",
 "Marketplace-Post Office", "Marketplace-Shop",
 "Marketplace-Town Hall", "Shop-Town Hall"

];

The network of roads in the village forms a graph. A graph is a collection of
points (places in the village) with lines between them (roads). This graph will
be the world that our robot moves through.

The array of strings isn’t very easy to work with. What we’re interested in is
the destinations that we can reach from a given place. Let’s convert the list of
roads to a data structure that, for each place, tells us what can be reached
from there.

function buildGraph(edges) {
 let graph = Object.create(null);

 function addEdge(from, to) {
 if (from in graph) {
 graph[from].push(to);

 } else {
 graph[from] = [to];
 }
 }

 for (let [from, to] of edges.map(r => r.split("-"))) {
 addEdge(from, to);
 addEdge(to, from);

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 2/14

 }
 return graph;

}

const roadGraph = buildGraph(roads);

Given an array of edges, buildGraph creates a map object that, for each node,
stores an array of connected nodes. It uses the split method to go from the
road strings—which have the form "Start-End")—to two-element arrays
containing the start and end as separate strings.

The task

Our robot will be moving around the village. There are parcels in various
places, each addressed to some other place. The robot picks up parcels when
it comes across them and delivers them when it arrives at their destinations.

The automaton must decide, at each point, where to go next. It has finished its
task when all parcels have been delivered.

To be able to simulate this process, we must define a virtual world that can
describe it. This model tells us where the robot is and where the parcels are.
When the robot has decided to move somewhere, we need to update the
model to reflect the new situation.

If you’re thinking in terms of object-oriented programming, your first impulse
might be to start defining objects for the various elements in the world: a class
for the robot, one for a parcel, maybe one for places. These could then hold
properties that describe their current state, such as the pile of parcels at a
location, which we could change when updating the world.

This is wrong. At least, it usually is. The fact that something sounds like an
object does not automatically mean that it should be an object in your
program. Reflexively writing classes for every concept in your application
tends to leave you with a collection of interconnected objects that each have
their own internal, changing state. Such programs are often hard to
understand and thus easy to break.

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 3/14

Instead, let’s condense the village’s state down to the minimal set of values
that define it. There’s the robot’s current location and the collection of
undelivered parcels, each of which has a current location and a destination
address. That’s it.

While we’re at it, let’s make it so that we don’t change this state when the
robot moves but rather compute a new state for the situation after the move.

class VillageState {
 constructor(place, parcels) {

 this.place = place;
 this.parcels = parcels;
 }

 move(destination) {
 if (!roadGraph[this.place].includes(destination)) {
 return this;

 } else {
 let parcels = this.parcels.map(p => {
 if (p.place != this.place) return p;

 return {place: destination, address: p.address};
 }).filter(p => p.place != p.address);
 return new VillageState(destination, parcels);
 }

 }
}

The move method is where the action happens. It first checks whether there is
a road going from the current place to the destination, and if not, it returns
the old state since this is not a valid move.

Next, the method creates a new state with the destination as the robot’s new
place. It also needs to create a new set of parcels—parcels that the robot is
carrying (that are at the robot’s current place) need to be moved along to the
new place. And parcels that are addressed to the new place need to be
delivered—that is, they need to be removed from the set of undelivered
parcels. The call to map takes care of the moving, and the call to filter does
the delivering.

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 4/14

Parcel objects aren’t changed when they are moved but re-created. The move
method gives us a new village state but leaves the old one entirely intact.

let first = new VillageState(
 "Post Office",

 [{place: "Post Office", address: "Alice's House"}]
);
let next = first.move("Alice's House");

console.log(next.place);
// → Alice's House
console.log(next.parcels);

// → []
console.log(first.place);
// → Post Office

The move causes the parcel to be delivered, which is reflected in the next
state. But the initial state still describes the situation where the robot is at the
post office and the parcel is undelivered.

Persistent data

Data structures that don’t change are called immutable or persistent. They
behave a lot like strings and numbers in that they are who they are and stay
that way, rather than containing different things at different times.

In JavaScript, just about everything can be changed, so working with values
that are supposed to be persistent requires some restraint. There is a function
called Object.freeze that changes an object so that writing to its properties
is ignored. You could use that to make sure your objects aren’t changed, if you
want to be careful. Freezing does require the computer to do some extra work,
and having updates ignored is just about as likely to confuse someone as
having them do the wrong thing. I usually prefer to just tell people that a
given object shouldn’t be messed with and hope they remember it.

let object = Object.freeze({value: 5});
object.value = 10;

console.log(object.value);
// → 5

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 5/14

Why am I going out of my way to not change objects when the language is
obviously expecting me to? Because it helps me understand my programs.
This is about complexity management again. When the objects in my system
are fixed, stable things, I can consider operations on them in isolation—
moving to Alice’s house from a given start state always produces the same
new state. When objects change over time, that adds a whole new dimension
of complexity to this kind of reasoning.

For a small system like the one we are building in this chapter, we could
handle that bit of extra complexity. But the most important limit on what kind
of systems we can build is how much we can understand. Anything that makes
your code easier to understand makes it possible to build a more ambitious
system.

Unfortunately, although understanding a system built on persistent data
structures is easier, designing one, especially when your programming
language isn’t helping, can be a little harder. We’ll look for opportunities to
use persistent data structures in this book, but we’ll also be using changeable
ones.

Simulation

A delivery robot looks at the world and decides in which direction it wants to
move. As such, we could say that a robot is a function that takes a
VillageState object and returns the name of a nearby place.

Because we want robots to be able to remember things so they can make and
execute plans, we also pass them their memory and allow them to return a
new memory. Thus, the thing a robot returns is an object containing both the
direction it wants to move in and a memory value that will be given back to it
the next time it is called.

function runRobot(state, robot, memory) {

 for (let turn = 0;; turn++) {
 if (state.parcels.length == 0) {
 console.log(`Done in ${turn} turns`);

 break;
 }
 let action = robot(state, memory);

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 6/14

 state = state.move(action.direction);
 memory = action.memory;

 console.log(`Moved to ${action.direction}`);
 }
}

Consider what a robot has to do to “solve” a given state. It must pick up all
parcels by visiting every location that has a parcel and deliver them by visiting
every location to which a parcel is addressed, but only after picking up the
parcel.

What is the dumbest strategy that could possibly work? The robot could just
walk in a random direction every turn. That means, with great likelihood, it
will eventually run into all parcels and then also at some point reach the place
where they should be delivered.

Here’s what that could look like:

function randomPick(array) {

 let choice = Math.floor(Math.random() * array.length);
 return array[choice];
}

function randomRobot(state) {
 return {direction: randomPick(roadGraph[state.place])};

}

Remember that Math.random() returns a number between zero and one—
but always below one. Multiplying such a number by the length of an array
and then applying Math.floor to it gives us a random index for the array.

Since this robot does not need to remember anything, it ignores its second
argument (remember that JavaScript functions can be called with extra
arguments without ill effects) and omits the memory property in its returned
object.

To put this sophisticated robot to work, we’ll first need a way to create a new
state with some parcels. A static method (written here by directly adding a
property to the constructor) is a good place to put that functionality.

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 7/14

VillageState.random = function(parcelCount = 5) {
 let parcels = [];

 for (let i = 0; i < parcelCount; i++) {
 let address = randomPick(Object.keys(roadGraph));
 let place;
 do {

 place = randomPick(Object.keys(roadGraph));
 } while (place == address);
 parcels.push({place, address});

 }
 return new VillageState("Post Office", parcels);
};

We don’t want any parcels to be sent from the same place that they are
addressed to. For this reason, the do loop keeps picking new places when it
gets one that’s equal to the address.

Let’s start up a virtual world.

runRobot(VillageState.random(), randomRobot);
// → Moved to Marketplace
// → Moved to Town Hall
// → …
// → Done in 63 turns

It takes the robot a lot of turns to deliver the parcels because it isn’t planning
ahead very well. We’ll address that soon.

For a more pleasant perspective on the simulation, you can use the
runRobotAnimation function that’s available in this chapter’s programming
environment. This runs the simulation, but instead of outputting text, it
shows you the robot moving around the village map.

runRobotAnimation(VillageState.random(), randomRobot);

The way runRobotAnimation is implemented will remain a mystery for now,
but after you’ve read the later chapters of this book, which discuss JavaScript
integration in web browsers, you’ll be able to guess how it works.

The mail truck’s route

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 8/14

https://eloquentjavascript.net/code/#7
https://eloquentjavascript.net/code/#7
https://eloquentjavascript.net/14_dom.html

We should be able to do a lot better than the random robot. An easy
improvement would be to take a hint from the way real-world mail delivery
works. If we find a route that passes all places in the village, the robot could
run that route twice, at which point it is guaranteed to be done. Here is one
such route (starting from the post office):

const mailRoute = [
 "Alice's House", "Cabin", "Alice's House", "Bob's House",

 "Town Hall", "Daria's House", "Ernie's House",
 "Grete's House", "Shop", "Grete's House", "Farm",
 "Marketplace", "Post Office"
];

To implement the route-following robot, we’ll need to make use of robot
memory. The robot keeps the rest of its route in its memory and drops the
first element every turn.

function routeRobot(state, memory) {
 if (memory.length == 0) {
 memory = mailRoute;

 }
 return {direction: memory[0], memory: memory.slice(1)};
}

This robot is a lot faster already. It’ll take a maximum of 26 turns (twice the
13-step route) but usually less.

runRobotAnimation(VillageState.random(), routeRobot, []);

Pathfinding

Still, I wouldn’t really call blindly following a fixed route intelligent behavior.
The robot could work more efficiently if it adjusted its behavior to the actual
work that needs to be done.

To do that, it has to be able to deliberately move toward a given parcel or
toward the location where a parcel has to be delivered. Doing that, even when
the goal is more than one move away, will require some kind of route-finding
function.

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 9/14

The problem of finding a route through a graph is a typical search problem.
We can tell whether a given solution (a route) is valid, but we can’t directly
compute the solution the way we could for 2 + 2. Instead, we have to keep
creating potential solutions until we find one that works.

The number of possible routes through a graph is infinite. But when searching
for a route from A to B, we are interested only in the ones that start at A. We
also don’t care about routes that visit the same place twice—those are
definitely not the most efficient route anywhere. So that cuts down on the
number of routes that the route finder has to consider.

In fact, since we are mostly interested in the shortest route, we want to make
sure we look at short routes before we look at longer ones. A good approach
would be to “grow” routes from the starting point, exploring every reachable
place that hasn’t been visited yet until a route reaches the goal. That way, we’ll
only explore routes that are potentially interesting, and we know that the first
route we find is the shortest route (or one of the shortest routes, if there are
more than one).

Here is a function that does this:

function findRoute(graph, from, to) {
 let work = [{at: from, route: []}];

 for (let i = 0; i < work.length; i++) {
 let {at, route} = work[i];
 for (let place of graph[at]) {
 if (place == to) return route.concat(place);

 if (!work.some(w => w.at == place)) {
 work.push({at: place, route: route.concat(place)});
 }

 }
 }
}

The exploring has to be done in the right order—the places that were reached
first have to be explored first. We can’t immediately explore a place as soon as
we reach it because that would mean places reached from there would also be
explored immediately, and so on, even though there may be other, shorter
paths that haven’t yet been explored.

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 10/14

Therefore, the function keeps a work list. This is an array of places that
should be explored next, along with the route that got us there. It starts with
just the start position and an empty route.

The search then operates by taking the next item in the list and exploring that,
which means it looks at all roads going from that place. If one of them is the
goal, a finished route can be returned. Otherwise, if we haven’t looked at this
place before, a new item is added to the list. If we have looked at it before,
since we are looking at short routes first, we’ve found either a longer route to
that place or one precisely as long as the existing one, and we don’t need to
explore it.

You can visualize this as a web of known routes crawling out from the start
location, growing evenly on all sides (but never tangling back into itself). As
soon as the first thread reaches the goal location, that thread is traced back to
the start, giving us our route.

Our code doesn’t handle the situation where there are no more work items on
the work list because we know that our graph is connected, meaning that
every location can be reached from all other locations. We’ll always be able to
find a route between two points, and the search can’t fail.

function goalOrientedRobot({place, parcels}, route) {
 if (route.length == 0) {

 let parcel = parcels[0];
 if (parcel.place != place) {
 route = findRoute(roadGraph, place, parcel.place);
 } else {

 route = findRoute(roadGraph, place, parcel.address);
 }
 }

 return {direction: route[0], memory: route.slice(1)};
}

This robot uses its memory value as a list of directions to move in, just like the
route-following robot. Whenever that list is empty, it has to figure out what to
do next. It takes the first undelivered parcel in the set and, if that parcel hasn’t
been picked up yet, plots a route toward it. If the parcel has been picked up, it

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 11/14

still needs to be delivered, so the robot creates a route toward the delivery
address instead.

Let’s see how it does.

runRobotAnimation(VillageState.random(),
 goalOrientedRobot, []);

This robot usually finishes the task of delivering 5 parcels in about 16 turns.
That’s slightly better than routeRobot but still definitely not optimal. We’ll
continue refining it in the exercises.

Exercises

Measuring a robot

It’s hard to objectively compare robots by just letting them solve a few
scenarios. Maybe one robot just happened to get easier tasks or the kind of
tasks that it is good at, whereas the other didn’t.

Write a function compareRobots that takes two robots (and their starting
memory). It should generate 100 tasks and let each of the robots solve each of
these tasks. When done, it should output the average number of steps each
robot took per task.

For the sake of fairness, make sure you give each task to both robots, rather
than generating different tasks per robot.

function compareRobots(robot1, memory1, robot2, memory2) {
 // Your code here

}

compareRobots(routeRobot, [], goalOrientedRobot, []);

Display hints...

Robot efficiency

Can you write a robot that finishes the delivery task faster than
goalOrientedRobot? If you observe that robot’s behavior, what obviously
stupid things does it do? How could those be improved?

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 12/14

If you solved the previous exercise, you might want to use your
compareRobots function to verify whether you improved the robot.

// Your code here

runRobotAnimation(VillageState.random(), yourRobot, memory);

Display hints...

Persistent group

Most data structures provided in a standard JavaScript environment aren’t
very well suited for persistent use. Arrays have slice and concat methods,
which allow us to easily create new arrays without damaging the old one. But
Set , for example, has no methods for creating a new set with an item added
or removed.

Write a new class PGroup , similar to the Group class from Chapter 6, which
stores a set of values. Like Group , it has add , delete , and has methods. Its
add method, however, should return a new PGroup instance with the given
member added and leave the old one unchanged. Similarly, delete should
create a new instance without a given member.

The class should work for values of any type, not just strings. It does not have
to be efficient when used with large numbers of values.

The constructor shouldn’t be part of the class’s interface (though you’ll
definitely want to use it internally). Instead, there is an empty instance,
PGroup.empty , that can be used as a starting value.

Why do you need only one PGroup.empty value rather than having a function
that creates a new, empty map every time?

class PGroup {
 // Your code here
}

let a = PGroup.empty.add("a");
let ab = a.add("b");

let b = ab.delete("a");

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 13/14

https://eloquentjavascript.net/06_object.html#groups

console.log(b.has("b"));

// → true
console.log(a.has("b"));
// → false
console.log(b.has("a"));

// → false

Display hints...
◂ ● ▸ ?

27/06/2024, 18:45 Project: A Robot :: Eloquent JavaScript

https://eloquentjavascript.net/07_robot.html 14/14

https://eloquentjavascript.net/06_object.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/08_error.html

