
◂ ● ▸ ?
Data Structures: Objects and Arrays

Numbers, Booleans, and strings are the atoms from which data structures are
built. Many types of information require more than one atom, though. Objects
allow us to group values—including other objects—to build more complex
structures.

The programs we have built so far have been limited by the fact that they were
operating only on simple data types. After learning the basics of data
structures in this chapter, you’ll know enough to start writing useful
programs.

The chapter will work through a more or less realistic programming example,
introducing concepts as they apply to the problem at hand. The example code
will often build on functions and bindings introduced earlier in the book.

The weresquirrel

On two occasions I have been asked, ‘Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ [...] I am not able rightly to
apprehend the kind of confusion of ideas that could provoke such a question.”

“

Charles Babbage, Passages from the Life of a Philosopher (1864)—

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 1/30

https://eloquentjavascript.net/03_functions.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/05_higher_order.html

Every now and then, usually between 8 p.m. and 10 p.m., Jacques finds
himself transforming into a small furry rodent with a bushy tail.

On one hand, Jacques is quite glad that he doesn’t have classic lycanthropy.
Turning into a squirrel does cause fewer problems than turning into a wolf.
Instead of having to worry about accidentally eating the neighbor (that would
be awkward), he worries about being eaten by the neighbor’s cat. After two
occasions of waking up on a precariously thin branch in the crown of an oak,
naked and disoriented, he has taken to locking the doors and windows of his
room at night and putting a few walnuts on the floor to keep himself busy.

But Jacques would prefer to get rid of his condition entirely. The irregular
occurrences of the transformation make him suspect that they might be
triggered by something. For a while, he believed that it happened only on days
when he had been near oak trees. However, avoiding oak trees did not solve
the problem.

Switching to a more scientific approach, Jacques has started keeping a daily
log of everything he does on a given day and whether he changed form. With
this data he hopes to narrow down the conditions that trigger the
transformations.

The first thing he needs is a data structure to store this information.

Datasets

To work with a chunk of digital data, we first have to find a way to represent it
in our machine’s memory. Say, for example, that we want to represent a
collection of the numbers 2, 3, 5, 7, and 11.

We could get creative with strings—after all, strings can have any length, so
we can put a lot of data into them—and use "2 3 5 7 11" as our
representation. But this is awkward. We’d have to somehow extract the digits
and convert them back to numbers to access them.

Fortunately, JavaScript provides a data type specifically for storing sequences
of values. It is called an array and is written as a list of values between square
brackets, separated by commas:

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 2/30

let listOfNumbers = [2, 3, 5, 7, 11];
console.log(listOfNumbers[2]);

// → 5
console.log(listOfNumbers[0]);
// → 2
console.log(listOfNumbers[2 - 1]);

// → 3

The notation for getting at the elements inside an array also uses square
brackets. A pair of square brackets immediately after an expression, with
another expression inside of them, will look up the element in the left-hand
expression that corresponds to the index given by the expression in the
brackets.

The first index of an array is zero, not one, so the first element is retrieved
with listOfNumbers[0] . Zero-based counting has a long tradition in
technology and in certain ways makes a lot of sense, but it takes some getting
used to. Think of the index as the number of items to skip, counting from the
start of the array.

Properties

We’ve seen a few expressions like myString.length (to get the length of a
string) and Math.max (the maximum function) in past chapters. These
expressions access a property of some value. In the first case, we access the
length property of the value in myString . In the second, we access the
property named max in the Math object (which is a collection of mathematics-
related constants and functions).

Almost all JavaScript values have properties. The exceptions are null and
undefined . If you try to access a property on one of these nonvalues, you get
an error:

null.length;

// → TypeError: null has no properties

The two main ways to access properties in JavaScript are with a dot and with
square brackets. Both value.x and value[x] access a property on value—
but not necessarily the same property. The difference is in how x is

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 3/30

interpreted. When using a dot, the word after the dot is the literal name of the
property. When using square brackets, the expression between the brackets is
evaluated to get the property name. Whereas value.x fetches the property of
value named “x”, value[x] takes the value of the variable named x and uses
that, converted to a string, as the property name.

If you know that the property in which you are interested is called color, you
say value.color . If you want to extract the property named by the value held
in the binding i , you say value[i] . Property names are strings. They can be
any string, but the dot notation works only with names that look like valid
binding names—starting with a letter or underscore, and containing only
letters, numbers, and underscores. If you want to access a property named 2
or John Doe, you must use square brackets: value[2] or value["John
Doe"] .

The elements in an array are stored as the array’s properties, using numbers
as property names. Because you can’t use the dot notation with numbers and
usually want to use a binding that holds the index anyway, you have to use the
bracket notation to get at them.

Just like strings, arrays have a length property that tells us how many
elements the array has.

Methods

Both string and array values contain, in addition to the length property, a
number of properties that hold function values.

let doh = "Doh";

console.log(typeof doh.toUpperCase);
// → function
console.log(doh.toUpperCase());

// → DOH

Every string has a toUpperCase property. When called, it will return a copy
of the string in which all letters have been converted to uppercase. There is
also toLowerCase , going the other way.

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 4/30

Interestingly, even though the call to toUpperCase does not pass any
arguments, the function somehow has access to the string "Doh" , the value
whose property we called. You’ll find out how this works in Chapter 6.

Properties that contain functions are generally called methods of the value
they belong to, as in “toUpperCase is a method of a string”.

This example demonstrates two methods you can use to manipulate arrays:

let sequence = [1, 2, 3];
sequence.push(4);

sequence.push(5);
console.log(sequence);
// → [1, 2, 3, 4, 5]
console.log(sequence.pop());

// → 5
console.log(sequence);
// → [1, 2, 3, 4]

The push method adds values to the end of an array. The pop method does
the opposite, removing the last value in the array and returning it.

These somewhat silly names are the traditional terms for operations on a
stack. A stack, in programming, is a data structure that allows you to push
values into it and pop them out again in the opposite order so that the thing
that was added last is removed first. Stacks are common in programming—
you might remember the function call stack from the previous chapter, which
is an instance of the same idea.

Objects

Back to the weresquirrel. A set of daily log entries can be represented as an
array, but the entries do not consist of just a number or a string—each entry
needs to store a list of activities and a Boolean value that indicates whether
Jacques turned into a squirrel or not. Ideally, we would like to group these
together into a single value and then put those grouped values into an array of
log entries.

Values of the type object are arbitrary collections of properties. One way to
create an object is by using braces as an expression:

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 5/30

https://eloquentjavascript.net/06_object.html#obj_methods
https://eloquentjavascript.net/03_functions.html#stack

let day1 = {
 squirrel: false,

 events: ["work", "touched tree", "pizza", "running"]
};
console.log(day1.squirrel);
// → false
console.log(day1.wolf);
// → undefined
day1.wolf = false;

console.log(day1.wolf);
// → false

Inside the braces, you write a list of properties separated by commas. Each
property has a name followed by a colon and a value. When an object is
written over multiple lines, indenting it as shown in this example helps with
readability. Properties whose names aren’t valid binding names or valid
numbers must be quoted:

let descriptions = {

 work: "Went to work",
 "touched tree": "Touched a tree"
};

This means that braces have two meanings in JavaScript. At the start of a
statement, they begin a block of statements. In any other position, they
describe an object. Fortunately, it is rarely useful to start a statement with an
object in braces, so the ambiguity between these two is not much of a
problem. The one case where this does come up is when you want to return an
object from a short-hand arrow function—you can’t write n => {prop: n}
since the braces will be interpreted as a function body. Instead, you have to
put a set of parentheses around the object to make it clear that it is an
expression.

Reading a property that doesn’t exist will give you the value undefined .

It is possible to assign a value to a property expression with the = operator.
This will replace the property’s value if it already existed or create a new
property on the object if it didn’t.

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 6/30

To briefly return to our tentacle model of bindings—property bindings are
similar. They grasp values, but other bindings and properties might be
holding onto those same values. You can think of objects as octopuses with
any number of tentacles, each of which has a name written on it.

The delete operator cuts off a tentacle from such an octopus. It is a unary
operator that, when applied to an object property, will remove the named
property from the object. This is not a common thing to do, but it is possible.

let anObject = {left: 1, right: 2};
console.log(anObject.left);

// → 1
delete anObject.left;
console.log(anObject.left);
// → undefined
console.log("left" in anObject);
// → false
console.log("right" in anObject);

// → true

The binary in operator, when applied to a string and an object, tells you
whether that object has a property with that name. The difference between
setting a property to undefined and actually deleting it is that in the first
case, the object still has the property (it just doesn’t have a very interesting
value), whereas in the second case, the property is no longer present and in
will return false .

To find out what properties an object has, you can use the Object.keys
function. Give the function an object and it will return an array of strings—the
object’s property names:

console.log(Object.keys({x: 0, y: 0, z: 2}));
// → ["x", "y", "z"]

There’s an Object.assign function that copies all properties from one object
into another:

let objectA = {a: 1, b: 2};
Object.assign(objectA, {b: 3, c: 4});

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 7/30

console.log(objectA);
// → {a: 1, b: 3, c: 4}

Arrays, then, are just a kind of object specialized for storing sequences of
things. If you evaluate typeof [] , it produces "object" . You can visualize
arrays as long, flat octopuses with all their tentacles in a neat row, labeled
with numbers.

Jacques will represent the journal that Jacques keeps as an array of objects:

let journal = [
 {events: ["work", "touched tree", "pizza",
 "running", "television"],
 squirrel: false},

 {events: ["work", "ice cream", "cauliflower",
 "lasagna", "touched tree", "brushed teeth"],
 squirrel: false},

 {events: ["weekend", "cycling", "break", "peanuts",
 "beer"],
 squirrel: true},

 /* and so on... */
];

Mutability

We will get to actual programming soon, but first, there’s one more piece of
theory to understand.

We saw that object values can be modified. The types of values discussed in
earlier chapters, such as numbers, strings, and Booleans, are all immutable—
it is impossible to change values of those types. You can combine them and
derive new values from them, but when you take a specific string value, that
value will always remain the same. The text inside it cannot be changed. If you
have a string that contains "cat" , it is not possible for other code to change a
character in your string to make it spell "rat" .

Objects work differently. You can change their properties, causing a single
object value to have different content at different times.

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 8/30

When we have two numbers, 120 and 120, we can consider them precisely the
same number, whether or not they refer to the same physical bits. With
objects, there is a difference between having two references to the same object
and having two different objects that contain the same properties. Consider
the following code:

let object1 = {value: 10};
let object2 = object1;

let object3 = {value: 10};

console.log(object1 == object2);
// → true
console.log(object1 == object3);
// → false

object1.value = 15;
console.log(object2.value);
// → 15
console.log(object3.value);
// → 10

The object1 and object2 bindings grasp the same object, which is why
changing object1 also changes the value of object2 . They are said to have
the same identity. The binding object3 points to a different object, which
initially contains the same properties as object1 but lives a separate life.

Bindings can also be changeable or constant, but this is separate from the way
their values behave. Even though number values don’t change, you can use a
let binding to keep track of a changing number by changing the value at
which the binding points. Similarly, though a const binding to an object can
itself not be changed and will continue to point at the same object, the
contents of that object might change.

const score = {visitors: 0, home: 0};
// This is okay

score.visitors = 1;
// This isn't allowed
score = {visitors: 1, home: 1};

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 9/30

When you compare objects with JavaScript’s == operator, it compares by
identity: it will produce true only if both objects are precisely the same value.
Comparing different objects will return false , even if they have identical
properties. There is no “deep” comparison operation built into JavaScript that
compares objects by contents, but it is possible to write it yourself (which is
one of the exercises at the end of this chapter).

The lycanthrope’s log

Jacques starts up his JavaScript interpreter and sets up the environment he
needs to keep his journal:

let journal = [];

function addEntry(events, squirrel) {
 journal.push({events, squirrel});

}

Note that the object added to the journal looks a little odd. Instead of
declaring properties like events: events , it just gives a property name:
events . This is shorthand that means the same thing—if a property name in
brace notation isn’t followed by a value, its value is taken from the binding
with the same name.

Every evening at 10 p.m.—or sometimes the next morning, after climbing
down from the top shelf of his bookcase—Jacques records the day:

addEntry(["work", "touched tree", "pizza", "running",
 "television"], false);
addEntry(["work", "ice cream", "cauliflower", "lasagna",

 "touched tree", "brushed teeth"], false);
addEntry(["weekend", "cycling", "break", "peanuts",
 "beer"], true);

Once he has enough data points, he intends to use statistics to find out which
of these events may be related to the squirrelifications.

Correlation is a measure of dependence between statistical variables. A
statistical variable is not quite the same as a programming variable. In
statistics you typically have a set of measurements, and each variable is

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 10/30

measured for every measurement. Correlation between variables is usually
expressed as a value that ranges from -1 to 1. Zero correlation means the
variables are not related. A correlation of 1 indicates that the two are perfectly
related—if you know one, you also know the other. Negative 1 also means that
the variables are perfectly related but are opposites—when one is true, the
other is false.

To compute the measure of correlation between two Boolean variables, we
can use the phi coefficient (ϕ). This is a formula whose input is a frequency
table containing the number of times the different combinations of the
variables were observed. The output of the formula is a number between -1
and 1 that describes the correlation.

We could take the event of eating pizza and put that in a frequency table like
this, where each number indicates the number of times that combination
occurred in our measurements.

No squirrel, no pizza 76

Squirrel, no pizza 4

No squirrel, pizza 9

Squirrel, pizza 1

If we call that table n, we can compute ϕ using the following formula:

ϕ =
n11n00 − n10n01

√

(If at this point you’re putting the book down to focus on a terrible flashback
to 10th grade math class—hold on! I do not intend to torture you with endless

 n1•n0•n•1n•0

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 11/30

pages of cryptic notation—it’s just this one formula for now. And even with
this one, all we do is turn it into JavaScript.)

The notation n01 indicates the number of measurements where the first
variable (squirrelness) is false (0) and the second variable (pizza) is true (1).
In the pizza table, n01 is 9.

The value n1• refers to the sum of all measurements where the first variable is
true, which is 5 in the example table. Likewise, n•0 refers to the sum of the
measurements where the second variable is false.

So for the pizza table, the part above the division line (the dividend) would be
1×76−4×9 = 40, and the part below it (the divisor) would be the square root of
5×85×10×80, or √340,000. This comes out to ϕ ≈ 0.069, which is tiny. Eating
pizza does not appear to have influence on the transformations.

Computing correlation

We can represent a two-by-two table in JavaScript with a four-element array
([76, 9, 4, 1]). We could also use other representations, such as an array
containing two two-element arrays ([[76, 9], [4, 1]]) or an object with
property names like "11" and "01" , but the flat array is simple and makes
the expressions that access the table pleasantly short. We’ll interpret the
indices to the array as two-bit binary numbers, where the leftmost (most
significant) digit refers to the squirrel variable and the rightmost (least
significant) digit refers to the event variable. For example, the binary number
10 refers to the case where Jacques did turn into a squirrel, but the event
(say, “pizza”) didn’t occur. This happened four times. And since binary 10 is 2
in decimal notation, we will store this number at index 2 of the array.

This is the function that computes the ϕ coefficient from such an array:

function phi(table) {

 return (table[3] * table[0] - table[2] * table[1]) /
 Math.sqrt((table[2] + table[3]) *
 (table[0] + table[1]) *

 (table[1] + table[3]) *
 (table[0] + table[2]));
}

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 12/30

console.log(phi([76, 9, 4, 1]));

// → 0.068599434

This is a direct translation of the ϕ formula into JavaScript. Math.sqrt is the
square root function, as provided by the Math object in a standard JavaScript
environment. We have to add two fields from the table to get fields like n1•

because the sums of rows or columns are not stored directly in our data
structure.

Jacques keeps his journal for three months. The resulting dataset is available
in the coding sandbox for this chapter, where it is stored in the JOURNAL
binding, and in a downloadable file.

To extract a two-by-two table for a specific event from the journal, we must
loop over all the entries and tally how many times the event occurs in relation
to squirrel transformations:

function tableFor(event, journal) {
 let table = [0, 0, 0, 0];
 for (let i = 0; i < journal.length; i++) {

 let entry = journal[i], index = 0;
 if (entry.events.includes(event)) index += 1;
 if (entry.squirrel) index += 2;

 table[index] += 1;
 }
 return table;

}

console.log(tableFor("pizza", JOURNAL));
// → [76, 9, 4, 1]

Arrays have an includes method that checks whether a given value exists in
the array. The function uses that to determine whether the event name it is
interested in is part of the event list for a given day.

The body of the loop in tableFor figures out which box in the table each
journal entry falls into by checking whether the entry contains the specific
event it’s interested in and whether the event happens alongside a squirrel
incident. The loop then adds one to the correct box in the table.

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 13/30

https://eloquentjavascript.net/code#4
https://eloquentjavascript.net/code/journal.js

We now have the tools we need to compute individual correlations. The only
step remaining is to find a correlation for every type of event that was
recorded and see whether anything stands out.

Array loops

In the tableFor function, there’s a loop like this:

for (let i = 0; i < JOURNAL.length; i++) {

 let entry = JOURNAL[i];
 // Do something with entry
}

This kind of loop is common in classical JavaScript—going over arrays one
element at a time is something that comes up a lot, and to do that you’d run a
counter over the length of the array and pick out each element in turn.

There is a simpler way to write such loops in modern JavaScript:

for (let entry of JOURNAL) {
 console.log(`${entry.events.length} events.`);
}

When a for loop uses the word of after its variable definition, it will loop
over the elements of the value given after of . This works not only for arrays
but also for strings and some other data structures. We’ll discuss how it works
in Chapter 6.

The final analysis

We need to compute a correlation for every type of event that occurs in the
dataset. To do that, we first need to find every type of event.

function journalEvents(journal) {
 let events = [];
 for (let entry of journal) {

 for (let event of entry.events) {
 if (!events.includes(event)) {
 events.push(event);

 }

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 14/30

https://eloquentjavascript.net/06_object.html

 }
 }

 return events;
}

console.log(journalEvents(JOURNAL));

// → ["carrot", "exercise", "weekend", "bread", …]

By adding any event names that aren’t already in it to the events array, the
function collects every type of event.

Using that function, we can see all the correlations:

for (let event of journalEvents(JOURNAL)) {
 console.log(event + ":", phi(tableFor(event, JOURNAL)));

}
// → carrot: 0.0140970969
// → exercise: 0.0685994341
// → weekend: 0.1371988681
// → bread: -0.0757554019
// → pudding: -0.0648203724
// and so on...

Most correlations seem to lie close to zero. Eating carrots, bread, or pudding
apparently does not trigger squirrel-lycanthropy. The transformations do
seem to occur somewhat more often on weekends. Let’s filter the results to
show only correlations greater than 0.1 or less than -0.1:

for (let event of journalEvents(JOURNAL)) {
 let correlation = phi(tableFor(event, JOURNAL));
 if (correlation > 0.1 || correlation < -0.1) {

 console.log(event + ":", correlation);
 }
}

// → weekend: 0.1371988681
// → brushed teeth: -0.3805211953
// → candy: 0.1296407447
// → work: -0.1371988681
// → spaghetti: 0.2425356250
// → reading: 0.1106828054
// → peanuts: 0.5902679812

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 15/30

Aha! There are two factors with a correlation clearly stronger than the others.
Eating peanuts has a strong positive effect on the chance of turning into a
squirrel, whereas brushing teeth has a significant negative effect.

Interesting. Let’s try something:

for (let entry of JOURNAL) {
 if (entry.events.includes("peanuts") &&

 !entry.events.includes("brushed teeth")) {
 entry.events.push("peanut teeth");
 }
}

console.log(phi(tableFor("peanut teeth", JOURNAL)));
// → 1

That’s a strong result. The phenomenon occurs precisely when Jacques eats
peanuts and fails to brush his teeth. If only he weren’t such a slob about
dental hygiene, he’d never even have noticed his affliction.

Knowing this, Jacques stops eating peanuts altogether and finds that his
transformations stop.

But it only takes a few months for him to notice that something is missing
from this entirely human way of living. Without his feral adventures, Jacques
hardly feels alive at all. He decides he’d rather be a full-time wild animal.
After building a beautiful little tree house in the forest and equipping it with a
peanut butter dispenser and a ten-year supply of peanut butter, he changes
form one last time, and lives the short and energetic life of a squirrel.

Further arrayology

Before finishing the chapter, I want to introduce you to a few more object-
related concepts. I’ll start by introducing some generally useful array
methods.

We saw push and pop , which add and remove elements at the end of an
array, earlier in this chapter. The corresponding methods for adding and
removing things at the start of an array are called unshift and shift .

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 16/30

let todoList = [];
function remember(task) {

 todoList.push(task);
}
function getTask() {
 return todoList.shift();

}
function rememberUrgently(task) {
 todoList.unshift(task);

}

This program manages a queue of tasks. You add tasks to the end of the queue
by calling remember("groceries") , and when you’re ready to do something,
you call getTask() to get (and remove) the front item from the queue. The
rememberUrgently function also adds a task but adds it to the front instead
of the back of the queue.

To search for a specific value, arrays provide an indexOf method. The
method searches through the array from the start to the end and returns the
index at which the requested value was found—or -1 if it wasn’t found. To
search from the end instead of the start, there’s a similar method called
lastIndexOf :

console.log([1, 2, 3, 2, 1].indexOf(2));
// → 1
console.log([1, 2, 3, 2, 1].lastIndexOf(2));
// → 3

Both indexOf and lastIndexOf take an optional second argument that
indicates where to start searching.

Another fundamental array method is slice , which takes start and end
indices and returns an array that has only the elements between them. The
start index is inclusive and the end index is exclusive.

console.log([0, 1, 2, 3, 4].slice(2, 4));
// → [2, 3]
console.log([0, 1, 2, 3, 4].slice(2));
// → [2, 3, 4]

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 17/30

When the end index is not given, slice will take all of the elements after the
start index. You can also omit the start index to copy the entire array.

The concat method can be used to append arrays together to create a new
array, similar to what the + operator does for strings.

The following example shows both concat and slice in action. It takes an
array and an index and returns a new array that is a copy of the original array
with the element at the given index removed:

function remove(array, index) {
 return array.slice(0, index)

 .concat(array.slice(index + 1));
}
console.log(remove(["a", "b", "c", "d", "e"], 2));
// → ["a", "b", "d", "e"]

If you pass concat an argument that is not an array, that value will be added
to the new array as if it were a one-element array.

Strings and their properties

We can read properties like length and toUpperCase from string values. But
if we try to add a new property, it doesn’t stick.

let kim = "Kim";
kim.age = 88;

console.log(kim.age);
// → undefined

Values of type string, number, and Boolean are not objects, and though the
language doesn’t complain if you try to set new properties on them, it doesn’t
actually store those properties. As mentioned earlier, such values are
immutable and cannot be changed.

But these types do have built-in properties. Every string value has a number
of methods. Some very useful ones are slice and indexOf , which resemble
the array methods of the same name:

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 18/30

console.log("coconuts".slice(4, 7));
// → nut
console.log("coconut".indexOf("u"));
// → 5

One difference is that a string’s indexOf can search for a string containing
more than one character, whereas the corresponding array method looks only
for a single element:

console.log("one two three".indexOf("ee"));
// → 11

The trim method removes whitespace (spaces, newlines, tabs, and similar
characters) from the start and end of a string:

console.log(" okay \n ".trim());
// → okay

The zeroPad function from the previous chapter also exists as a method. It is
called padStart and takes the desired length and padding character as
arguments:

console.log(String(6).padStart(3, "0"));

// → 006

You can split a string on every occurrence of another string with split and
join it again with join :

let sentence = "Secretarybirds specialize in stomping";
let words = sentence.split(" ");

console.log(words);
// → ["Secretarybirds", "specialize", "in", "stomping"]
console.log(words.join(". "));
// → Secretarybirds. specialize. in. stomping

A string can be repeated with the repeat method, which creates a new string
containing multiple copies of the original string, glued together:

console.log("LA".repeat(3));
// → LALALA

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 19/30

https://eloquentjavascript.net/03_functions.html

We have already seen the string type’s length property. Accessing the
individual characters in a string looks like accessing array elements (with a
complication that we’ll discuss in Chapter 5).

let string = "abc";
console.log(string.length);

// → 3
console.log(string[1]);
// → b

Rest parameters

It can be useful for a function to accept any number of arguments. For
example, Math.max computes the maximum of all the arguments it is given.
To write such a function, you put three dots before the function’s last
parameter, like this:

function max(...numbers) {
 let result = -Infinity;
 for (let number of numbers) {

 if (number > result) result = number;
 }
 return result;

}
console.log(max(4, 1, 9, -2));
// → 9

When such a function is called, the rest parameter is bound to an array
containing all further arguments. If there are other parameters before it, their
values aren’t part of that array. When, as in max , it is the only parameter, it
will hold all arguments.

You can use a similar three-dot notation to call a function with an array of
arguments:

let numbers = [5, 1, 7];
console.log(max(...numbers));
// → 7

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 20/30

https://eloquentjavascript.net/05_higher_order.html#code_units

This “spreads” out the array into the function call, passing its elements as
separate arguments. It is possible to include an array like that along with
other arguments, as in max(9, ...numbers, 2) .

Square bracket array notation similarly allows the triple-dot operator to
spread another array into the new array:

let words = ["never", "fully"];
console.log(["will", ...words, "understand"]);

// → ["will", "never", "fully", "understand"]

This works even in curly brace objects, where it adds all properties from
another object. If a property is added multiple times, the last value to be
added wins:

let coordinates = {x: 10, y: 0};
console.log({...coordinates, y: 5, z: 1});
// → {x: 10, y: 5, z: 1}

The Math object

As we’ve seen, Math is a grab bag of number-related utility functions such as
Math.max (maximum), Math.min (minimum), and Math.sqrt (square root).

The Math object is used as a container to group a bunch of related
functionality. There is only one Math object, and it is almost never useful as a
value. Rather, it provides a namespace so that all these functions and values
do not have to be global bindings.

Having too many global bindings “pollutes” the namespace. The more names
have been taken, the more likely you are to accidentally overwrite the value of
some existing binding. For example, it’s not unlikely you’ll want to name
something max in one of your programs. Since JavaScript’s built-in max
function is tucked safely inside the Math object, you don’t have to worry about
overwriting it.

Many languages will stop you, or at least warn you, when you are defining a
binding with a name that is already taken. JavaScript does this for bindings

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 21/30

you declared with let or const but—perversely—not for standard bindings
nor for bindings declared with var or function .

Back to the Math object. If you need to do trigonometry, Math can help. It
contains cos (cosine), sin (sine), and tan (tangent), as well as their inverse
functions, acos , asin , and atan , respectively. The number π (pi)—or at least
the closest approximation that fits in a JavaScript number—is available as
Math.PI . There is an old programming tradition of writing the names of
constant values in all caps:

function randomPointOnCircle(radius) {
 let angle = Math.random() * 2 * Math.PI;

 return {x: radius * Math.cos(angle),
 y: radius * Math.sin(angle)};
}
console.log(randomPointOnCircle(2));

// → {x: 0.3667, y: 1.966}

If you’re not familiar with sines and cosines, don’t worry. I’ll explain them
when they are used in Chapter 14.

The previous example used Math.random . This is a function that returns a
new pseudorandom number between zero (inclusive) and one (exclusive)
every time you call it:

console.log(Math.random());
// → 0.36993729369714856
console.log(Math.random());
// → 0.727367032552138
console.log(Math.random());

// → 0.40180766698904335

Though computers are deterministic machines—they always react the same
way if given the same input—it is possible to have them produce numbers that
appear random. To do that, the machine keeps some hidden value, and
whenever you ask for a new random number, it performs complicated
computations on this hidden value to create a new value. It stores a new value
and returns some number derived from it. That way, it can produce ever new,
hard-to-predict numbers in a way that seems random.

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 22/30

https://eloquentjavascript.net/14_dom.html#sin_cos

If we want a whole random number instead of a fractional one, we can use
Math.floor (which rounds down to the nearest whole number) on the result
of Math.random :

console.log(Math.floor(Math.random() * 10));
// → 2

Multiplying the random number by 10 gives us a number greater than or
equal to 0 and below 10. Since Math.floor rounds down, this expression will
produce, with equal chance, any number from 0 through 9.

There are also the functions Math.ceil (for “ceiling”, which rounds up to a
whole number), Math.round (to the nearest whole number), and Math.abs ,
which takes the absolute value of a number, meaning it negates negative
values but leaves positive ones as they are.

Destructuring

Let’s return to the phi function for a moment.

function phi(table) {
 return (table[3] * table[0] - table[2] * table[1]) /

 Math.sqrt((table[2] + table[3]) *
 (table[0] + table[1]) *
 (table[1] + table[3]) *
 (table[0] + table[2]));

}

One reason this function is awkward to read is that we have a binding
pointing at our array, but we’d much prefer to have bindings for the elements
of the array—that is, let n00 = table[0] and so on. Fortunately, there is a
succinct way to do this in JavaScript:

function phi([n00, n01, n10, n11]) {
 return (n11 * n00 - n10 * n01) /

 Math.sqrt((n10 + n11) * (n00 + n01) *
 (n01 + n11) * (n00 + n10));
}

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 23/30

This also works for bindings created with let , var , or const . If you know
that the value you are binding is an array, you can use square brackets to
“look inside” of the value, binding its contents.

A similar trick works for objects, using braces instead of square brackets:

let {name} = {name: "Faraji", age: 23};
console.log(name);

// → Faraji

Note that if you try to destructure null or undefined , you get an error, much
as you would if you directly try to access a property of those values.

Optional property access

When you aren’t sure whether a given value produces an object, but still want
to read a property from it when it does, you can use a variant of the dot
notation: object?.property .

function city(object) {

 return object.address?.city;
}
console.log(city({address: {city: "Toronto"}}));
// → Toronto
console.log(city({name: "Vera"}));
// → undefined

The expression a?.b means the same as a.b when a isn’t null or undefined.
When it is, it evaluates to undefined. This can be convenient when, as in the
example, you aren’t sure that a given property exists or when a variable might
hold an undefined value.

A similar notation can be used with square bracket access, and even with
function calls, by putting ?. in front of the parentheses or brackets:

console.log("string".notAMethod?.());

// → undefined
console.log({}.arrayProp?.[0]);
// → undefined

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 24/30

JSON

Because properties grasp their value rather than contain it, objects and arrays
are stored in the computer’s memory as sequences of bits holding the
addresses—the place in memory—of their contents. An array with another
array inside of it consists of (at least) one memory region for the inner array
and another for the outer array, containing (among other things) a number
that represents the address of the inner array.

If you want to save data in a file for later or send it to another computer over
the network, you have to somehow convert these tangles of memory addresses
to a description that can be stored or sent. You could send over your entire
computer memory along with the address of the value you’re interested in, I
suppose, but that doesn’t seem like the best approach.

What we can do is serialize the data. That means it is converted into a flat
description. A popular serialization format is called JSON (pronounced
“Jason”), which stands for JavaScript Object Notation. It is widely used as a
data storage and communication format on the web, even with languages
other than JavaScript.

JSON looks similar to JavaScript’s way of writing arrays and objects, with a
few restrictions. All property names have to be surrounded by double quotes,
and only simple data expressions are allowed—no function calls, bindings, or
anything that involves actual computation. Comments are not allowed in
JSON.

A journal entry might look like this when represented as JSON data:

{

 "squirrel": false,
 "events": ["work", "touched tree", "pizza", "running"]
}

JavaScript gives us the functions JSON.stringify and JSON.parse to
convert data to and from this format. The first takes a JavaScript value and
returns a JSON-encoded string. The second takes such a string and converts it
to the value it encodes:

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 25/30

let string = JSON.stringify({squirrel: false,
 events: ["weekend"]});

console.log(string);
// → {"squirrel":false,"events":["weekend"]}
console.log(JSON.parse(string).events);
// → ["weekend"]

Summary

Objects and arrays provide ways to group several values into a single value.
This allows us to put a bunch of related things in a bag and run around with
the bag instead of wrapping our arms around all of the individual things and
trying to hold on to them separately.

Most values in JavaScript have properties, with the exceptions being null
and undefined . Properties are accessed using value.prop or
value["prop"] . Objects tend to use names for their properties and store
more or less a fixed set of them. Arrays, on the other hand, usually contain
varying amounts of conceptually identical values and use numbers (starting
from 0) as the names of their properties.

There are some named properties in arrays, such as length and a number of
methods. Methods are functions that live in properties and (usually) act on
the value of which they are a property.

You can iterate over arrays using a special kind of for loop: for (let
element of array) .

Exercises

The sum of a range

The introduction of this book alluded to the following as a nice way to
compute the sum of a range of numbers:

console.log(sum(range(1, 10)));

Write a range function that takes two arguments, start and end , and
returns an array containing all the numbers from start up to and including
end .

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 26/30

https://eloquentjavascript.net/00_intro.html

Next, write a sum function that takes an array of numbers and returns the
sum of these numbers. Run the example program and see whether it does
indeed return 55.

As a bonus assignment, modify your range function to take an optional third
argument that indicates the “step” value used when building the array. If no
step is given, the elements should go up by increments of one, corresponding
to the old behavior. The function call range(1, 10, 2) should return [1,
3, 5, 7, 9] . Make sure this also works with negative step values so that
range(5, 2, -1) produces [5, 4, 3, 2] .

// Your code here.

console.log(range(1, 10));
// → [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
console.log(range(5, 2, -1));
// → [5, 4, 3, 2]
console.log(sum(range(1, 10)));
// → 55

Display hints...

Reversing an array

Arrays have a reverse method that changes the array by inverting the order
in which its elements appear. For this exercise, write two functions,
reverseArray and reverseArrayInPlace . The first, reverseArray , should
take an array as argument and produce a new array that has the same
elements in the inverse order. The second, reverseArrayInPlace , should do
what the reverse method does: modify the array given as argument by
reversing its elements. Neither may use the standard reverse method.

Thinking back to the notes about side effects and pure functions in the
previous chapter, which variant do you expect to be useful in more situations?
Which one runs faster?

// Your code here.

let myArray = ["A", "B", "C"];
console.log(reverseArray(myArray));

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 27/30

https://eloquentjavascript.net/03_functions.html#pure

// → ["C", "B", "A"];
console.log(myArray);

// → ["A", "B", "C"];
let arrayValue = [1, 2, 3, 4, 5];
reverseArrayInPlace(arrayValue);
console.log(arrayValue);

// → [5, 4, 3, 2, 1]

Display hints...

A list

As generic blobs of values, objects can be used to build all sorts of data
structures. A common data structure is the list (not to be confused with
arrays). A list is a nested set of objects, with the first object holding a
reference to the second, the second to the third, and so on:

let list = {
 value: 1,

 rest: {
 value: 2,
 rest: {

 value: 3,
 rest: null
 }
 }

};

The resulting objects form a chain, as shown in the following diagram:

value: 1
rest:

value: 2
rest:

value: 3
rest: null

A nice thing about lists is that they can share parts of their structure. For
example, if I create two new values {value: 0, rest: list} and {value:
-1, rest: list} (with list referring to the binding defined earlier), they
are both independent lists, but they share the structure that makes up their
last three elements. The original list is also still a valid three-element list.

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 28/30

Write a function arrayToList that builds up a list structure like the one
shown when given [1, 2, 3] as argument. Also write a listToArray
function that produces an array from a list. Add the helper functions
prepend , which takes an element and a list and creates a new list that adds
the element to the front of the input list, and nth , which takes a list and a
number and returns the element at the given position in the list (with zero
referring to the first element) or undefined when there is no such element.

If you haven’t already, also write a recursive version of nth .

// Your code here.

console.log(arrayToList([10, 20]));
// → {value: 10, rest: {value: 20, rest: null}}
console.log(listToArray(arrayToList([10, 20, 30])));
// → [10, 20, 30]
console.log(prepend(10, prepend(20, null)));
// → {value: 10, rest: {value: 20, rest: null}}
console.log(nth(arrayToList([10, 20, 30]), 1));

// → 20

Display hints...

Deep comparison

The == operator compares objects by identity, but sometimes you’d prefer to
compare the values of their actual properties.

Write a function deepEqual that takes two values and returns true only if
they are the same value or are objects with the same properties, where the
values of the properties are equal when compared with a recursive call to
deepEqual .

To find out whether values should be compared directly (using the ===
operator for that) or have their properties compared, you can use the typeof
operator. If it produces "object" for both values, you should do a deep
comparison. But you have to take one silly exception into account: because of
a historical accident, typeof null also produces "object" .

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 29/30

The Object.keys function will be useful when you need to go over the
properties of objects to compare them.

// Your code here.

let obj = {here: {is: "an"}, object: 2};
console.log(deepEqual(obj, obj));
// → true
console.log(deepEqual(obj, {here: 1, object: 2}));

// → false
console.log(deepEqual(obj, {here: {is: "an"}, object: 2}));
// → true

Display hints...
◂ ● ▸ ?

27/06/2024, 18:44 Data Structures: Objects and Arrays :: Eloquent JavaScript

https://eloquentjavascript.net/04_data.html 30/30

https://eloquentjavascript.net/03_functions.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/05_higher_order.html

