
◂ ● ?
Project: Skill-Sharing Website

A skill-sharing meeting is an event where people with a shared interest come
together and give small, informal presentations about things they know. At a
gardening skill-sharing meeting, someone might explain how to cultivate
celery. Or in a programming skill-sharing group, you could drop by and tell
people about Node.js.

In this final project chapter, our goal is to set up a website for managing talks
given at a skill-sharing meeting. Imagine a small group of people meeting up
regularly in the office of one of the members to talk about unicycling. The
previous organizer of the meetings moved to another town, and nobody
stepped forward to take over this task. We want a system that will let the
participants propose and discuss talks among themselves without an active
organizer.

Just like in the previous chapter, some of the code in this chapter is written
for Node.js, and running it directly in the HTML page that you are looking at

If you have knowledge, let others light their candles at it.”“

Margaret Fuller—

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 1/21

https://eloquentjavascript.net/20_node.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/20_node.html

is unlikely to work. The full code for the project can be downloaded from
https://eloquentjavascript.net/code/skillsharing.zip.

Design

There is a server part to this project, written for Node.js, and a client part,
written for the browser. The server stores the system’s data and provides it to
the client. It also serves the files that implement the client-side system.

The server keeps the list of talks proposed for the next meeting, and the client
shows this list. Each talk has a presenter name, a title, a summary, and an
array of comments associated with it. The client allows users to propose new
talks (adding them to the list), delete talks, and comment on existing talks.
Whenever the user makes such a change, the client makes an HTTP request to
tell the server about it.

The application will be set up to show a live view of the current proposed talks
and their comments. Whenever someone, somewhere, submits a new talk or
adds a comment, all people who have the page open in their browsers should
immediately see the change. This poses a bit of a challenge—there is no way

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 2/21

https://eloquentjavascript.net/code/skillsharing.zip

for a web server to open a connection to a client, nor is there a good way to
know which clients are currently looking at a given website.

A common solution to this problem is called long polling, which happens to
be one of the motivations for Node’s design.

Long polling

To be able to immediately notify a client that something changed, we need a
connection to that client. Since web browsers do not traditionally accept
connections and clients are often behind routers that would block such
connections anyway, having the server initiate this connection is not practical.

We can arrange for the client to open the connection and keep it around so
that the server can use it to send information when it needs to do so. But an
HTTP request allows only a simple flow of information: the client sends a
request, the server comes back with a single response, and that’s it. A
technology called WebSockets makes it possible to open connections for
arbitrary data exchange, but using such sockets properly is somewhat tricky.

In this chapter, we use a simpler technique, long polling, where clients
continuously ask the server for new information using regular HTTP requests,
and the server stalls its answer when it has nothing new to report.

As long as the client makes sure it constantly has a polling request open, it
will receive information from the server quickly after it becomes available. For
example, if Fatma has our skill-sharing application open in her browser, that
browser will have made a request for updates and will be waiting for a
response to that request. When Iman submits a talk on Extreme Downhill
Unicycling, the server will notice that Fatma is waiting for updates and send a
response containing the new talk to her pending request. Fatma’s browser will
receive the data and update the screen to show the talk.

To prevent connections from timing out (being aborted because of a lack of
activity), long polling techniques usually set a maximum time for each
request, after which the server will respond anyway, even though it has
nothing to report. The client can then start a new request. Periodically

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 3/21

restarting the request also makes the technique more robust, allowing clients
to recover from temporary connection failures or server problems.

A busy server that is using long polling may have thousands of waiting
requests, and thus TCP connections, open. Node, which makes it easy to
manage many connections without creating a separate thread of control for
each one, is a good fit for such a system.

HTTP interface

Before we start designing either the server or the client, let’s think about the
point where they touch: the HTTP interface over which they communicate.

We will use JSON as the format of our request and response body. Like in the
file server from Chapter 20, we’ll try to make good use of HTTP methods and
headers. The interface is centered around the /talks path. Paths that do not
start with /talks will be used for serving static files—the HTML and
JavaScript code for the client-side system.

A GET request to /talks returns a JSON document like this:

[{"title": "Unituning",

 "presenter": "Jamal",
 "summary": "Modifying your cycle for extra style",
 "comments": []}]

Creating a new talk is done by making a PUT request to a URL like
/talks/Unituning , where the part after the second slash is the title of the
talk. The PUT request’s body should contain a JSON object that has
presenter and summary properties.

Since talk titles may contain spaces and other characters that may not appear
normally in a URL, title strings must be encoded with the
encodeURIComponent function when building up such a URL.

console.log("/talks/" + encodeURIComponent("How to Idle"));
// → /talks/How%20to%20Idle

A request to create a talk about idling might look something like this:

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 4/21

https://eloquentjavascript.net/20_node.html#file_server

PUT /talks/How%20to%20Idle HTTP/1.1
Content-Type: application/json

Content-Length: 92

{"presenter": "Maureen",
 "summary": "Standing still on a unicycle"}

Such URLs also support GET requests to retrieve the JSON representation of a
talk and DELETE requests to delete a talk.

Adding a comment to a talk is done with a POST request to a URL like /
talks/Unituning/comments , with a JSON body that has author and
message properties.

POST /talks/Unituning/comments HTTP/1.1
Content-Type: application/json
Content-Length: 72

{"author": "Iman",
 "message": "Will you talk about raising a cycle?"}

To support long polling, GET requests to /talks may include extra headers
that inform the server to delay the response if no new information is available.
We’ll use a pair of headers normally intended to manage caching: ETag and
If-None-Match .

Servers may include an ETag (“entity tag”) header in a response. Its value is a
string that identifies the current version of the resource. Clients, when they
later request that resource again, may make a conditional request by
including an If-None-Match header whose value holds that same string. If
the resource hasn’t changed, the server will respond with status code 304,
which means “not modified”, telling the client that its cached version is still
current. When the tag does not match, the server responds as normal.

We need something like this, where the client can tell the server which version
of the list of talks it has, and the server responds only when that list has
changed. But instead of immediately returning a 304 response, the server
should stall the response and return only when something new is available or
a given amount of time has elapsed. To distinguish long polling requests from

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 5/21

normal conditional requests, we give them another header, Prefer:
wait=90 , which tells the server that the client is willing to wait up to 90
seconds for the response.

The server will keep a version number that it updates every time the talks
change and will use that as the ETag value. Clients can make requests like this
to be notified when the talks change:

GET /talks HTTP/1.1
If-None-Match: "4"

Prefer: wait=90

(time passes)

HTTP/1.1 200 OK
Content-Type: application/json
ETag: "5"

Content-Length: 295

[....]

The protocol described here doesn’t do any access control. Everybody can
comment, modify talks, and even delete them. (Since the internet is full of
hooligans, putting such a system online without further protection probably
wouldn’t end well.)

The server

Let’s start by building the server-side part of the program. The code in this
section runs on Node.js.

Routing

Our server will use Node’s createServer to start an HTTP server. In the
function that handles a new request, we must distinguish between the various
kinds of requests (as determined by the method and the path) that we
support. This can be done with a long chain of if statements, but there’s a
nicer way.

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 6/21

A router is a component that helps dispatch a request to the function that can
handle it. You can tell the router, for example, that PUT requests with a path
that matches the regular expression /^\/talks\/([^\/]+)$/ (/talks/
followed by a talk title) can be handled by a given function. In addition, it can
help extract the meaningful parts of the path (in this case the talk title),
wrapped in parentheses in the regular expression, and pass them to the
handler function.

There are a number of good router packages on NPM, but here we’ll write one
ourselves to illustrate the principle.

This is router.mjs , which we will later import from our server module:

export class Router {
 constructor() {

 this.routes = [];
 }
 add(method, url, handler) {
 this.routes.push({method, url, handler});

 }
 async resolve(request, context) {
 let {pathname} = new URL(request.url, "http://d");

 for (let {method, url, handler} of this.routes) {
 let match = url.exec(pathname);
 if (!match || request.method != method) continue;

 let parts = match.slice(1).map(decodeURIComponent);
 return handler(context, ...parts, request);
 }
 }

}

The module exports the Router class. A router object allows you to register
handlers for specific methods and URL patterns with its add method. When a
request is resolved with the resolve method, the router calls the handler
whose method and URL match the request and return its result.

Handler functions are called with the context value given to resolve . We
will use this to give them access to our server state. Additionally, they receive
the match strings for any groups they defined in their regular expression, and

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 7/21

the request object. The strings have to be URL-decoded since the raw URL
may contain %20-style codes.

Serving files

When a request matches none of the request types defined in our router, the
server must interpret it as a request for a file in the public directory. It
would be possible to use the file server defined in Chapter 20 to serve such
files, but we neither need nor want to support PUT and DELETE requests on
files, and we would like to have advanced features such as support for
caching. Let’s use a solid, well-tested static file server from NPM instead.

I opted for serve-static . This isn’t the only such server on NPM, but it
works well and fits our purposes. The serve-static package exports a
function that can be called with a root directory to produce a request handler
function. The handler function accepts the request and response
arguments provided by the server from "node:http" , and a third argument,
a function that it will call if no file matches the request. We want our server to
first check for requests we should handle specially, as defined in the router, so
we wrap it in another function.

import {createServer} from "node:http";
import serveStatic from "serve-static";

function notFound(request, response) {
 response.writeHead(404, "Not found");
 response.end("<h1>Not found</h1>");

}

class SkillShareServer {

 constructor(talks) {
 this.talks = talks;
 this.version = 0;

 this.waiting = [];

 let fileServer = serveStatic("./public");
 this.server = createServer((request, response) => {

 serveFromRouter(this, request, response, () => {
 fileServer(request, response,
 () => notFound(request, response));

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 8/21

https://eloquentjavascript.net/20_node.html#file_server

 });
 });

 }
 start(port) {
 this.server.listen(port);
 }

 stop() {
 this.server.close();
 }

}

The serveFromRouter function has the same interface as fileServer ,
taking (request, response, next) arguments. We can use this to “chain”
several request handlers, allowing each to either handle the request or pass
responsibility for that on to the next handler. The final handler, notFound ,
simply responds with a “not found” error.

Our serveFromRouter function uses a similar convention to the file server
from the previous chapter for responses—handlers in the router return
promises that resolve to objects describing the response.

import {Router} from "./router.mjs";

const router = new Router();
const defaultHeaders = {"Content-Type": "text/plain"};

async function serveFromRouter(server, request,

 response, next) {
 let resolved = await router.resolve(request, server)
 .catch(error => {

 if (error.status != null) return error;
 return {body: String(err), status: 500};
 });

 if (!resolved) return next();
 let {body, status = 200, headers = defaultHeaders} =
 await resolved;
 response.writeHead(status, headers);

 response.end(body);
}

Talks as resources

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 9/21

https://eloquentjavascript.net/20_node.html

The talks that have been proposed are stored in the talks property of the
server, an object whose property names are the talk titles. We’ll add some
handlers to our router that expose these as HTTP resources under
/talks/[title] .

The handler for requests that GET a single talk must look up the talk and
respond either with the talk’s JSON data or with a 404 error response.

const talkPath = /^\/talks\/([^\/]+)$/;

router.add("GET", talkPath, async (server, title) => {
 if (Object.hasOwn(server.talks, title)) {
 return {body: JSON.stringify(server.talks[title]),
 headers: {"Content-Type": "application/json"}};

 } else {
 return {status: 404, body: `No talk '${title}' found`};
 }

});

Deleting a talk is done by removing it from the talks object.

router.add("DELETE", talkPath, async (server, title) => {
 if (Object.hasOwn(server.talks, title)) {

 delete server.talks[title];
 server.updated();
 }
 return {status: 204};

});

The updated method, which we will define later, notifies waiting long polling
requests about the change.

One handler that needs to read request bodies is the PUT handler, which is
used to create new talks. It has to check whether the data it was given has
presenter and summary properties, which are strings. Any data coming from
outside the system might be nonsense, and we don’t want to corrupt our
internal data model or crash when bad requests come in.

If the data looks valid, the handler stores an object that represents the new
talk in the talks object, possibly overwriting an existing talk with this title,

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 10/21

and again calls updated .

To read the body from the request stream, we will use the json function from
"node:stream/consumers" , which collects the data in the stream and then
parses it as JSON. There are similar exports called text (to read the content
as a string) and buffer (to read it as binary data) in this package. Since json
is a very generic name, the import renames it to readJSON to avoid confusion.

import {json as readJSON} from "node:stream/consumers";

router.add("PUT", talkPath,
 async (server, title, request) => {
 let talk = await readJSON(request);
 if (!talk ||

 typeof talk.presenter != "string" ||
 typeof talk.summary != "string") {
 return {status: 400, body: "Bad talk data"};

 }
 server.talks[title] = {
 title,

 presenter: talk.presenter,
 summary: talk.summary,
 comments: []
 };

 server.updated();
 return {status: 204};
});

Adding a comment to a talk works similarly. We use readJSON to get the
content of the request, validate the resulting data, and store it as a comment
when it looks valid.

router.add("POST", /^\/talks\/([^\/]+)\/comments$/,
 async (server, title, request) => {
 let comment = await readJSON(request);

 if (!comment ||
 typeof comment.author != "string" ||
 typeof comment.message != "string") {
 return {status: 400, body: "Bad comment data"};

 } else if (Object.hasOwn(server.talks, title)) {
 server.talks[title].comments.push(comment);
 server.updated();

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 11/21

 return {status: 204};
 } else {

 return {status: 404, body: `No talk '${title}' found`};
 }
});

Trying to add a comment to a nonexistent talk returns a 404 error.

Long polling support

The most interesting aspect of the server is the part that handles long polling.
When a GET request comes in for /talks , it may be either a regular request
or a long polling request.

There will be multiple places in which we have to send an array of talks to the
client, so we first define a helper method that builds up such an array and
includes an ETag header in the response.

SkillShareServer.prototype.talkResponse = function() {

 let talks = Object.keys(this.talks)
 .map(title => this.talks[title]);
 return {

 body: JSON.stringify(talks),
 headers: {"Content-Type": "application/json",
 "ETag": `"${this.version}"`,

 "Cache-Control": "no-store"}
 };
};

The handler itself needs to look at the request headers to see whether If-
None-Match and Prefer headers are present. Node stores headers, whose
names are specified to be case-insensitive, under their lowercase names.

router.add("GET", /^\/talks$/, async (server, request) => {

 let tag = /"(.*)"/.exec(request.headers["if-none-match"]);
 let wait = /\bwait=(\d+)/.exec(request.headers["prefer"]);
 if (!tag || tag[1] != server.version) {

 return server.talkResponse();
 } else if (!wait) {
 return {status: 304};

 } else {

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 12/21

 return server.waitForChanges(Number(wait[1]));
 }

});

If no tag was given or a tag was given that doesn’t match the server’s current
version, the handler responds with the list of talks. If the request is
conditional and the talks did not change, we consult the Prefer header to see
whether we should delay the response or respond right away.

Callback functions for delayed requests are stored in the server’s waiting
array so that they can be notified when something happens. The
waitForChanges method also immediately sets a timer to respond with a 304
status when the request has waited long enough.

SkillShareServer.prototype.waitForChanges = function(time) {
 return new Promise(resolve => {
 this.waiting.push(resolve);

 setTimeout(() => {
 if (!this.waiting.includes(resolve)) return;
 this.waiting = this.waiting.filter(r => r != resolve);

 resolve({status: 304});
 }, time * 1000);
 });

};

Registering a change with updated increases the version property and
wakes up all waiting requests.

SkillShareServer.prototype.updated = function() {
 this.version++;
 let response = this.talkResponse();

 this.waiting.forEach(resolve => resolve(response));
 this.waiting = [];
};

That concludes the server code. If we create an instance of
SkillShareServer and start it on port 8000, the resulting HTTP server
serves files from the public subdirectory alongside a talk-managing interface
under the /talks URL.

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 13/21

new SkillShareServer({}).start(8000);

The client

The client-side part of the skill-sharing website consists of three files: a tiny
HTML page, a style sheet, and a JavaScript file.

HTML

It is a widely used convention for web servers to try to serve a file named
index.html when a request is made directly to a path that corresponds to a
directory. The file server module we use, serve-static , supports this
convention. When a request is made to the path / , the server looks for the file
./public/index.html (./public being the root we gave it) and returns that
file if found.

Thus, if we want a page to show up when a browser is pointed at our server,
we should put it in public/index.html . This is our index file:

<!doctype html>
<meta charset="utf-8">
<title>Skill Sharing</title>

<link rel="stylesheet" href="skillsharing.css">

<h1>Skill Sharing</h1>

<script src="skillsharing_client.js"></script>

It defines the document title and includes a style sheet, which defines a few
styles to, among other things, make sure there is some space between talks. It
then adds a heading at the top of the page and loads the script that contains
the client-side application.

Actions

The application state consists of the list of talks and the name of the user, and
we’ll store it in a {talks, user} object. We don’t allow the user interface to
directly manipulate the state or send off HTTP requests. Rather, it may emit
actions that describe what the user is trying to do.

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 14/21

The handleAction function takes such an action and makes it happen.
Because our state updates are so simple, state changes are handled in the
same function.

function handleAction(state, action) {
 if (action.type == "setUser") {

 localStorage.setItem("userName", action.user);
 return {...state, user: action.user};
 } else if (action.type == "setTalks") {
 return {...state, talks: action.talks};

 } else if (action.type == "newTalk") {
 fetchOK(talkURL(action.title), {
 method: "PUT",

 headers: {"Content-Type": "application/json"},
 body: JSON.stringify({
 presenter: state.user,

 summary: action.summary
 })
 }).catch(reportError);
 } else if (action.type == "deleteTalk") {

 fetchOK(talkURL(action.talk), {method: "DELETE"})
 .catch(reportError);
 } else if (action.type == "newComment") {

 fetchOK(talkURL(action.talk) + "/comments", {
 method: "POST",
 headers: {"Content-Type": "application/json"},

 body: JSON.stringify({
 author: state.user,
 message: action.message
 })

 }).catch(reportError);
 }
 return state;

}

We’ll store the user’s name in localStorage so that it can be restored when
the page is loaded.

The actions that need to involve the server make network requests, using
fetch , to the HTTP interface described earlier. We use a wrapper function,
fetchOK , which makes sure the returned promise is rejected when the server
returns an error code.

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 15/21

function fetchOK(url, options) {
 return fetch(url, options).then(response => {

 if (response.status < 400) return response;
 else throw new Error(response.statusText);
 });
}

This helper function is used to build up a URL for a talk with a given title.

function talkURL(title) {
 return "talks/" + encodeURIComponent(title);
}

When the request fails, we don’t want our page to just sit there doing nothing
without explanation. The function called reportError , which we used as
catch handler, shows the user a crude dialog to tell them something went
wrong.

function reportError(error) {
 alert(String(error));
}

Rendering components

We’ll use an approach similar to the one we saw in Chapter 19, splitting the
application into components. However, since some of the components either
never need to update or are always fully redrawn when updated, we’ll define
those not as classes but as functions that directly return a DOM node. For
example, here is a component that shows the field where the user can enter
their name:

function renderUserField(name, dispatch) {
 return elt("label", {}, "Your name: ", elt("input", {
 type: "text",
 value: name,

 onchange(event) {
 dispatch({type: "setUser", user: event.target.value});
 }

 }));
}

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 16/21

https://eloquentjavascript.net/19_paint.html

The elt function used to construct DOM elements is the one we used in
Chapter 19.

A similar function is used to render talks, which include a list of comments
and a form for adding a new comment.

function renderTalk(talk, dispatch) {
 return elt(

 "section", {className: "talk"},
 elt("h2", null, talk.title, " ", elt("button", {
 type: "button",
 onclick() {

 dispatch({type: "deleteTalk", talk: talk.title});
 }
 }, "Delete")),

 elt("div", null, "by ",
 elt("strong", null, talk.presenter)),
 elt("p", null, talk.summary),

 ...talk.comments.map(renderComment),
 elt("form", {
 onsubmit(event) {
 event.preventDefault();

 let form = event.target;
 dispatch({type: "newComment",
 talk: talk.title,

 message: form.elements.comment.value});
 form.reset();
 }

 }, elt("input", {type: "text", name: "comment"}), " ",
 elt("button", {type: "submit"}, "Add comment")));
}

The "submit" event handler calls form.reset to clear the form’s content
after creating a "newComment" action.

When creating moderately complex pieces of DOM, this style of programming
starts to look rather messy. To avoid this, people often use a templating
language, which allows you to write your interface as an HTML file with some
special markers to indicate where dynamic elements go. Or they use JSX, a
non-standard JavaScript dialect that allows you to write something very close
to HTML tags in your program as if they are JavaScript expressions. Both of

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 17/21

https://eloquentjavascript.net/19_paint.html

these approaches use additional tools to pre-process the code before it can be
run, which we will avoid in this chapter.

Comments are simple to render.

function renderComment(comment) {
 return elt("p", {className: "comment"},

 elt("strong", null, comment.author),
 ": ", comment.message);
}

Finally, the form that the user can use to create a new talk is rendered like
this:

function renderTalkForm(dispatch) {

 let title = elt("input", {type: "text"});
 let summary = elt("input", {type: "text"});
 return elt("form", {

 onsubmit(event) {
 event.preventDefault();
 dispatch({type: "newTalk",

 title: title.value,
 summary: summary.value});
 event.target.reset();
 }

 }, elt("h3", null, "Submit a Talk"),
 elt("label", null, "Title: ", title),
 elt("label", null, "Summary: ", summary),

 elt("button", {type: "submit"}, "Submit"));
}

Polling

To start the app, we need the current list of talks. Since the initial load is
closely related to the long polling process—the ETag from the load must be
used when polling—we’ll write a function that keeps polling the server for
/talks and calls a callback function when a new set of talks is available.

async function pollTalks(update) {

 let tag = undefined;
 for (;;) {
 let response;

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 18/21

 try {
 response = await fetchOK("/talks", {

 headers: tag && {"If-None-Match": tag,
 "Prefer": "wait=90"}
 });
 } catch (e) {

 console.log("Request failed: " + e);
 await new Promise(resolve => setTimeout(resolve, 500));
 continue;

 }
 if (response.status == 304) continue;
 tag = response.headers.get("ETag");

 update(await response.json());
 }
}

This is an async function so that looping and waiting for the request is easier.
It runs an infinite loop that, on each iteration, retrieves the list of talks—either
normally or, if this isn’t the first request, with the headers included that make
it a long polling request.

When a request fails, the function waits a moment and then tries again. This
way, if your network connection goes away for a while and then comes back,
the application can recover and continue updating. The promise resolved via
setTimeout is a way to force the async function to wait.

When the server gives back a 304 response, that means a long polling request
timed out, so the function should just immediately start the next request. If
the response is a normal 200 response, its body is read as JSON and passed to
the callback, and its ETag header value is stored for the next iteration.

The application

The following component ties the whole user interface together:

class SkillShareApp {

 constructor(state, dispatch) {
 this.dispatch = dispatch;
 this.talkDOM = elt("div", {className: "talks"});

 this.dom = elt("div", null,
 renderUserField(state.user, dispatch),

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 19/21

 this.talkDOM,
 renderTalkForm(dispatch));

 this.syncState(state);
 }

 syncState(state) {

 if (state.talks != this.talks) {
 this.talkDOM.textContent = "";
 for (let talk of state.talks) {

 this.talkDOM.appendChild(
 renderTalk(talk, this.dispatch));
 }

 this.talks = state.talks;
 }
 }
}

When the talks change, this component redraws all of them. This is simple
but also wasteful. We’ll get back to that in the exercises.

We can start the application like this:

function runApp() {
 let user = localStorage.getItem("userName") || "Anon";
 let state, app;

 function dispatch(action) {
 state = handleAction(state, action);
 app.syncState(state);

 }

 pollTalks(talks => {
 if (!app) {

 state = {user, talks};
 app = new SkillShareApp(state, dispatch);
 document.body.appendChild(app.dom);

 } else {
 dispatch({type: "setTalks", talks});
 }

 }).catch(reportError);
}

runApp();

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 20/21

If you run the server and open two browser windows for
http://localhost:8000 next to each other, you can see that the actions you
perform in one window are immediately visible in the other.

Exercises

The following exercises will involve modifying the system defined in this
chapter. To work on them, make sure you’ve downloaded the code
(https://eloquentjavascript.net/code/skillsharing.zip), installed Node
(https://nodejs.org), and installed the project’s dependency with npm
install .

Disk persistence

The skill-sharing server keeps its data purely in memory. This means that
when it crashes or is restarted for any reason, all talks and comments are lost.

Extend the server so that it stores the talk data to disk and automatically
reloads the data when it is restarted. Don’t worry about efficiency—do the
simplest thing that works.

Display hints...

Comment field resets

The wholesale redrawing of talks works pretty well because you usually can’t
tell the difference between a DOM node and its identical replacement. But
there are exceptions. If you start typing something in the comment field for a
talk in one browser window and then, in another, add a comment to that talk,
the field in the first window will be redrawn, removing both its content and its
focus.

When multiple people are adding comments at the same time, this would be
annoying. Can you come up with a way to solve it?

Display hints...
◂ ● ?

27/06/2024, 18:51 Project: Skill-Sharing Website :: Eloquent JavaScript

https://eloquentjavascript.net/21_skillsharing.html 21/21

http://localhost:8000/
https://eloquentjavascript.net/code/skillsharing.zip
https://nodejs.org/
https://eloquentjavascript.net/20_node.html
https://eloquentjavascript.net/index.html

