27/06/2024, 18:49 Node.js :: Eloquent JavaScript

NODE.JS

“A student asked, ‘The programmers of old used only simple machines and no
programming languages, yet they made beautiful programs. Why do we use
complicated machines and programming languages?’. Fu-Tzu replied, ‘The builders

999

of old used only sticks and clay, yet they made beautiful huts.

— Master Yuan-Ma, The Book of Programming

So far, we’ve used the JavaScript language in a single environment: the
browser. This chapter and the next one will briefly introduce Node.js, a
program that allows you to apply your JavaScript skills outside of the
browser. With it, you can build anything from small command line tools to
HTTP servers that power dynamic websites.

These chapters aim to teach you the main concepts that Node.js uses and to
give you enough information to write useful programs for it. They do not try
to be a complete, or even a thorough, treatment of the platform.

Whereas you could run the code in previous chapters directly on these pages,
because it was either raw JavaScript or written for the browser, the code
samples in this chapter are written for Node and often won’t run in the
browser.

https://eloquentjavascript.net/20_node.html 1/21

https://eloquentjavascript.net/19_paint.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/21_skillsharing.html
https://eloquentjavascript.net/21_skillsharing.html

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
If you want to follow along and run the code in this chapter, you’ll need to
install Node.js version 18 or higher. To do so, go to https://nodejs.org and
follow the installation instructions for your operating system. You can also
find further documentation for Node.js there.

BACKGROUND

When building systems that communicate over the network, the way you
manage input and output—that is, the reading and writing of data to and from
the network and hard drive—can make a big difference in how quickly a
system responds to the user or to network requests.

In such programs, asynchronous programming is often helpful. It allows the
program to send and receive data from and to multiple devices at the same
time without complicated thread management and synchronization.

Node was initially conceived for the purpose of making asynchronous
programming easy and convenient. JavaScript lends itself well to a system
like Node. It is one of the few programming languages that does not have a
built-in way to do input and output. Thus, JavaScript could be fit onto Node’s
rather eccentric approach to network and file system programming without
ending up with two inconsistent interfaces. In 2009, when Node was being
designed, people were already doing callback-based programming in the
browser, so the community around the language was used to an asynchronous
programming style.

THE NODE COMMAND

When Node.js is installed on a system, it provides a program called node,
which is used to run JavaScript files. Say you have a file hello. js, containing
this code:

let message = "Hello world";
console.log(message);

You can then run node from the command line like this to execute the
program:

https://eloquentjavascript.net/20_node.html 2/21

https://nodejs.org/

27/06/2024, 18:49 Node.js :: Eloquent JavaScript

$ node hello.js
Hello world

The console.log method in Node does something similar to what it does in
the browser. It prints out a piece of text. But in Node, the text will go to the
process’s standard output stream, rather than to a browser’s JavaScript
console. When running node from the command line, that means you see the
logged values in your terminal.

If you run node without giving it a file, it provides you with a prompt at which
you can type JavaScript code and immediately see the result.

$ node

> 1+ 1

2

> [-1, -2, -3].map(Math.abs)
[1, 2, 3]

> process.exit(0)

$

The process binding, just like the console binding, is available globally in
Node. It provides various ways to inspect and manipulate the current
program. The exit method ends the process and can be given an exit status
code, which tells the program that started node (in this case, the command
line shell) whether the program completed successfully (code zero) or
encountered an error (any other code).

To find the command line arguments given to your script, you can read
process.argv, which is an array of strings. Note that it also includes the
name of the node command and your script name, so the actual arguments
start at index 2. If showargv.js contains the statement console.
log(process.argv), you could run it like this:

$ node showargv.js one --and two
["node", "/tmp/showargv.js", "one", "--and", "two"]

All the standard JavaScript global bindings, such as Array, Math, and JSON,
are also present in Node’s environment. Browser-related functionality, such
as document or prompt, is not.

https://eloquentjavascript.net/20_node.html 3/21

27/06/2024, 18:49 Node.js :: Eloquent JavaScript

MODULES

Beyond the bindings I mentioned, such as console and process, Node puts
few additional bindings in the global scope. If you want to access built-in
functionality, you have to ask the module system for it.

Node started out using the CommonJS module system, based on the require
function, which we saw in Chapter 10. It will still use this system by default
when you load a . js file.

But today, Node also supports the more modern ES module system. When a
script’s filename ends in .mjs, it is considered to be such a module, and you
can use import and export in it (but not require). We will use ES modules
in this chapter.

When importing a module—whether with require or import —Node has to
resolve the given string to an actual file that it can load. Names that start with
/, ./,or ../ areresolved as files, relative to the current module’s path. Here,
. stands for the current directory, . ./ for one directory up, and / for the
root of the file system. If you ask for ". /graph.mjs" from the file /tmp/
robot/robot.mjs, Node will try to load the file /tmp/robot/graph.mjs.

When a string that does not look like a relative or absolute path is imported, it
is assumed to refer to either a built-in module or a module installed in a
node_modules directory. For example, importing from "node: fs" will give
you Node’s built-in file system module. Importing "robot" might try to load
the library found in node_modules/robot/. It’s common to install such
libraries is by using NPM, which we’ll return to in a moment.

Let’s set up a small project consisting of two files. The first one, called
main.mjs, defines a script that can be called from the command line to
reverse a string.

import {reverse} from "./reverse.mjs";

// Index 2 holds the first actual command line argument
Let argument = process.argv[Z2];

console.log(reverse(argument));

https://eloquentjavascript.net/20_node.html 4/21

https://eloquentjavascript.net/10_modules.html#commonjs

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
The file reverse.mjs defines a library for reversing strings, which can be
used both by this command line tool and by other scripts that need direct
access to a string-reversing function.

export function reverse(string) {
return Array.from(string).reverse().join("");

by

Remember that export is used to declare that a binding is part of the
module’s interface. That allows main.mjs to import and use the function.

We can now call our tool like this:

$ node main.mjs JavaScript
tpircSaval

INSTALLING WITH NPM

NPM, introduced in Chapter 10, is an online repository of JavaScript
modules, many of which are specifically written for Node. When you install
Node on your computer, you also get the npm command, which you can use to
interact with this repository.

NPM’s main use is downloading packages. We saw the ini package in
Chapter 10. We can use NPM to fetch and install that package on our
computer.

$ npm install ini
added 1 package in 723ms

$ node

> const {parse} = require("ini");
> parse("x = 1\ny = 2");

{ x: '"1', y: '2" 3}

After running npm install, NPM will have created a directory called
node_modules. Inside that directory will be an ini directory that contains
the library. You can open it and look at the code. When we import "ini", this

library is loaded, and we can call its parse property to parse a configuration
file.

https://eloquentjavascript.net/20_node.html 5/21

https://eloquentjavascript.net/10_modules.html#modules_npm
https://eloquentjavascript.net/10_modules.html#modules_ini

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
By default NPM installs packages under the current directory, rather than in a
central place. If you are used to other package managers, this may seem
unusual, but it has advantages—it puts each application in full control of the
packages it installs and makes it easier to manage versions and clean up when
removing an application.

PACKAGE FILES

After running npm install to install some package, you will find not only a
node_modules directory, but also a file called package. json in your current
directory. It is recommended to have such a file for each project. You can
create it manually or run npm init. This file contains information about the
project, such as its name and version, and lists its dependencies.

The robot simulation from Chapter 7, as modularized in the exercise in
Chapter 10, might have a package. json file like this:

"author": "Marijn Haverbeke'",
"name": "eloquent-javascript-robot",
"description": "Simulation of a package-delivery robot",
"version": "1.0.0",
"main": "run.mjs",
"dependencies": {
"dijkstrajs": "A1.0.1",
"random-item": "A1.0.0"

3

"license": "ISC"

When you run npm install without naming a package to install, NPM will
install the dependencies listed in package. json. When you install a specific
package that is not already listed as a dependency, NPM will add it to
package.json.

VERSIONS

A package. json file lists both the program’s own version and versions for its
dependencies. Versions are a way to deal with the fact that packages evolve

https://eloquentjavascript.net/20_node.html 6/21

https://eloquentjavascript.net/07_robot.html
https://eloquentjavascript.net/10_modules.html#modular_robot

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
separately, and code written to work with a package as it existed at one point
may not work with a later, modified version of the package.

NPM demands that its packages follow a schema called semantic versioning,
which encodes some information about which versions are compatible (don’t
break the old interface) in the version number. A semantic version consists of
three numbers, separated by periods, such as 2.3.0. Every time new
functionality is added, the middle number has to be incremented. Every time
compatibility is broken, so that existing code that uses the package might not
work with the new version, the first number has to be incremented.

A caret character (#) in front of the version number for a dependency in
package.json indicates that any version compatible with the given number
may be installed. For example, "22.3.0" would mean that any version
greater than or equal to 2.3.0 and less than 3.0.0 is allowed.

The npm command is also used to publish new packages or new versions of
packages. If you run npm publish in a directory that has a package.json
file, it will publish a package with the name and version listed in the JSON file
to the registry. Anyone can publish packages to NPM—though only under a
package name that isn’t in use yet, since it wouldn’t be good if random people
could update existing packages.

This book won’t delve further into the details of NPM usage. Refer to
https://npmjs.org for further documentation and a way to search for
packages.

THE FILE SYSTEM MODULE

One of the most commonly used built-in modules in Node is the node: fs
module, which stands for file system. It exports functions for working with
files and directories.

For example, the function called readFile reads a file and then calls a
callback with the file’s contents.

import {readFile} from "node:fs";
readFile("file.txt", "utf8", (error, text) => {
if (error) throw error;

https://eloquentjavascript.net/20_node.html 7121

https://npmjs.org/

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
console.log("The file contains:", text);

IDF

The second argument to readFile indicates the character encoding used to
decode the file into a string. There are several ways in which text can be
encoded to binary data, but most modern systems use UTF-8. Unless you
have reasons to believe another encoding is used, pass "utf8" when reading
a text file. If you do not pass an encoding, Node will assume you are interested
in the binary data and will give you a Buffer object instead of a string. This is
an array-like object that contains numbers representing the bytes (8-bit
chunks of data) in the files.

import {readFile} from '"node:fs";
readFile("file.txt", (error, buffer) => {
if (error) throw error;
console.log("The file contained", buffer.length, "bytes.",
"The first byte is:", buffer[0]);

DK
A similar function, writeFile, is used to write a file to disk.

import {writeFile} from "node:fs",;
writeFile("graffiti.txt", "Node was here", err => {
if (err) console.log(Failed to write file: ${err});
else console.log("File written.");

IDF

Here it was not necessary to specify the encoding—writeFile will assume
that when it is given a string to write, rather than a Buffer object, it should
write it out as text using its default character encoding, which is UTF-8.

The node: fs module contains many other useful functions: readdir will
give you the files in a directory as an array of strings, stat will retrieve
information about a file, rename will rename a file, unl ink will remove one,
and so on. See the documentation at https://nodejs.org for specifics.

Most of these take a callback function as the last parameter, which they call
either with an error (the first argument) or with a successful result (the
second). As we saw in Chapter 11, there are downsides to this style of

https://eloquentjavascript.net/20_node.html 8/21

https://nodejs.org/
https://eloquentjavascript.net/11_async.html

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
programming—the biggest one being that error handling becomes verbose
and error-prone.

The node: fs/promises module exports most of the same functions as the
old node: fs module, but uses promises rather than callback functions.

import {readFile} from "node:fs/promises";
readFile("file.txt", "utf8")
.then(text => console.log("The file contains:", text));

Sometimes you don’t need asynchronicity and it just gets in the way. Many of
the functions in node: fs also have a synchronous variant, which has the
same name with Sync added to the end. For example, the synchronous
version of readFile is called readFileSync.

import {readFileSync} from "node:fs";
console.log("The file contains:",
readFileSync("file.txt", "utf8"));

Note that while such a synchronous operation is being performed, your
program is stopped entirely. If it should be responding to the user or to other
machines on the network, being stuck on a synchronous action might produce
annoying delays.

THE HTTP MODULE

Another central module is called node:http. It provides functionality for
running an HTTP server.

This is all it takes to start an HTTP server:

import {createServer} from "node:http";
let server = createServer((request, response) => {
response.writeHead(200, {"Content-Type": "text/html"});
response.write(’
<h1>Hello!</h1>
<p>You asked for <code>${request.url}</code></p>");
response.end();

3)s

https://eloquentjavascript.net/20_node.html 9/21

27/06/2024, 18:49 Node.js :: Eloquent JavaScript

server.listen(8000);
console.log("Listening! (port 8000)");

If you run this script on your own machine, you can point your web browser
at http://localhost:8000/hello to make a request to your server. It will
respond with a small HTML page.

The function passed as argument to createServer is called every time a
client connects to the server. The request and response bindings are
objects representing the incoming and outgoing data. The first contains
information about the request, such as its url property, which tells us to what
URL the request was made.

When you open that page in your browser, it sends a request to your own
computer. This causes the server function to run and send back a response,
which you can then see in the browser.

To send something to the client, you call methods on the response object.
The first, writeHead, will write out the response headers (see Chapter 18).
You give it the status code (200 for “OK” in this case) and an object that
contains header values. The example sets the Content-Type header to inform
the client that we’ll be sending back an HTML document.

Next, the actual response body (the document itself) is sent with
response.write. You're allowed to call this method multiple times if you
want to send the response piece by piece, for example to stream data to the
client as it becomes available. Finally, response.end signals the end of the
response.

The call to server.listen causes the server to start waiting for connections
on port 8000. This is why you have to connect to localhost:8000 to speak to
this server, rather than just localhost, which would use the default port 8o.

When you run this script, the process just sits there and waits. When a script
is listening for events—in this case, network connections—node will not
automatically exit when it reaches the end of the script. To close it, press
CTRL-C.

https://eloquentjavascript.net/20_node.html 10/21

http://localhost:8000/hello
https://eloquentjavascript.net/18_http.html#headers

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
A real web server usually does more than the one in the example—it looks at
the request’s method (the method property) to see what action the client is
trying to perform and looks at the request’s URL to find out on which
resource this action is being performed. We’ll see a more advanced server
later in this chapter.

The node : http module also provides a request function that can be used to
make HTTP requests. However, it is a lot more cumbersome to use than
fetch, which we saw in Chapter 18. Fortunately, fetch is also available in
Node as a global binding. Unless you want to do something very specific, such
as processing the response document piece by piece as the data comes in over
the network, I recommend sticking to fetch.

STREAMS

The response object that the HTTP server could write to is an example of a
writable stream object, which is a widely used concept in Node. Such objects
have a write method that can be passed a string or a Buffer object to write
something to the stream. Their end method closes the stream and optionally
takes a value to write to the stream before closing. Both of these methods can
also be given a callback as an additional argument, which they will call when
the writing or closing has finished.

It is possible to create a writable stream that points at a file with the
createWriteStream function from the node: fs module. You can then use
the write method on the resulting object to write the file one piece at a time,
rather than in one shot as with writeFile.

Readable streams are a little more involved. The request argument to the
HTTP server’s callback is a readable stream. Reading from a stream is done
using event handlers rather than methods.

Objects that emit events in Node have a method called on that is similar to
the addEventListener method in the browser. You give it an event name
and then a function, and it will register that function to be called whenever
the given event occurs.

https://eloquentjavascript.net/20_node.html 11/21

https://eloquentjavascript.net/18_http.html

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
Readable streams have "data" and "end" events. The first is fired every time
data comes in, and the second is called whenever the stream is at its end. This
model is most suited for streaming data that can be immediately processed,
even when the whole document isn’t available yet. A file can be read as a
readable stream by using the createReadStream function from node: fs.

This code creates a server that reads request bodies and streams them back to
the client as all-uppercase text:

import {createServer} from "node:http";
createServer((request, response) => {
response.writeHead(200, {"Content-Type": "text/plain"});
request.on("data", chunk =>
response.write(chunk.toString().toUpperCase()));
request.on("end", () => response.end());
}).listen(8000);

The chunk value passed to the data handler will be a binary Buffer. We can
convert this to a string by decoding it as UTF-8 encoded characters with its
toString method.

The following piece of code, when run with the uppercasing server active, will
send a request to that server and write out the response it gets:

fetch("http://localhost:8000/", {

method: "POST",

body: "Hello server"
}).then(resp => resp.text()).then(console.log);
// - HELLO SERVER

A FILE SERVER

Let’s combine our newfound knowledge about HTTP servers and working
with the file system to create a bridge between the two: an HTTP server that
allows remote access to a file system. Such a server has all kinds of uses—it
allows web applications to store and share data, or it can give a group of
people shared access to a bunch of files.

When we treat files as HTTP resources, the HTTP methods GET, PUT, and
DELETE can be used to read, write, and delete the files, respectively. We will

https://eloquentjavascript.net/20_node.html 12/21

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
interpret the path in the request as the path of the file that the request refers
to.

We probably don’t want to share our whole file system, so we’ll interpret these
paths as starting in the server’s working directory, which is the directory in
which it was started. If I ran the server from /tmp/public/ (or
C:\tmp\public\ on Windows), then a request for /file.txt should refer to
/tmp/public/file.txt (or C:\tmp\public\file.txt).

We’'ll build the program piece by piece, using an object called methods to
store the functions that handle the various HTTP methods. Method handlers
are async functions that get the request object as argument and return a
promise that resolves to an object that describes the response.

import {createServer} from "node:http";
const methods = Object.create(null);

createServer((request, response) => {
let handler = methods[request.method] || notAllowed;
handler(request).catch(error => {
if (error.status != null) return error;
return {body: String(error), status: 500};
}).then(({body, status = 200, type = "text/plain"}) => {
response.writeHead(status, {"Content-Type": type});
if (body?.pipe) body.pipe(response);
else response.end(body);

1)
}).listen(8000);

async function notAllowed(request) {

return {

status: 405,

body: ‘Method ${request.method} not allowed."
33

b

This starts a server that just returns 405 error responses, which is the code
used to indicate that the server refuses to handle a given method.

https://eloquentjavascript.net/20_node.html 13/21

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
When a request handler’s promise is rejected, the catch call translates the
error into a response object, if it isn’t one already, so that the server can send
back an error response to inform the client that it failed to handle the request.

The status field of the response description may be omitted, in which case it
defaults to 200 (OK). The content type, in the type property, can also be left
off, in which case the response is assumed to be plain text.

When the value of body is a readable stream, it will have a pipe method that
we can use to forward all content from a readable stream to a writable stream.
If not, it is assumed to be either null (no body), a string, or a buffer, and it is
passed directly to the response’s end method.

To figure out which file path corresponds to a request URL, the urlPath
function uses the built-in URL class (which also exists in the browser) to parse
the URL. This constructor expects a full URL, not just the part starting with
the slash that we get from request.url, so we give it a dummy domain name
to fill in. It extracts its pathname, which will be something like " /file.txt",
decodes that to get rid of the %20-style escape codes, and resolves it relative to
the program’s working directory.

import {parse} from "node:url";
import {resolve, sep} from "node:path";

const baseDirectory = process.cwd();

function urlPath(url) {
let {pathname} = new URL(url, "http://d");
let path = resolve(decodeURIComponent(pathname).slice(1l));
if (path != baseDirectory &&
I'path.startsWith(baseDirectory + sep)) {
throw {status: 403, body: "Forbidden"};

3

return path;

As soon as you set up a program to accept network requests, you have to start
worrying about security. In this case, if we aren’t careful, it is likely that we’ll
accidentally expose our whole file system to the network.

https://eloquentjavascript.net/20_node.html 14/21

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
File paths are strings in Node. To map such a string to an actual file, there’s a
nontrivial amount of interpretation going on. Paths may, for example, include
. ./ to refer to a parent directory. One obvious source of problems would be
requests for paths like /. ./secret_file.

To avoid such problems, urlPath uses the resolve function from the

node : path module, which resolves relative paths. It then verifies that the
result is below the working directory. The process.cwd function (where cwd
stands for current working directory) can be used to find this working
directory. The sep binding from the node : path package is the system’s path
separator—a backslash on Windows and a forward slash on most other
systems. When the path doesn’t start with the base directory, the function
throws an error response object, using the HTTP status code indicating that
access to the resource is forbidden.

We'll set up the GET method to return a list of files when reading a directory
and to return the file’s content when reading a regular file.

One tricky question is what kind of Content-Type header we should set when
returning a file’s content. Since these files could be anything, our server can’t
simply return the same content type for all of them. NPM can help us again
here. The mime-types package (content type indicators like text/plain are
also called MIME types) knows the correct type for a large number of file
extensions.

The following npm command, in the directory where the server script lives,
installs a specific version of mime:

$ npm install mime-types@2.1.0

When a requested file does not exist, the correct HTTP status code to return is
404. We'll use the stat function, which looks up information about a file, to
find out both whether the file exists and whether it is a directory.

import {createReadStream} from "node:fs";
import {stat, readdir} from "node:fs/promises”;
import {lookup} from "mime-types';

methods.GET = async function(request) {

https://eloquentjavascript.net/20_node.html 15/21

27/06/2024, 18:49 Node.js :: Eloquent JavaScript

Let path = urlPath(request.url);
let stats;

try {
stats = await stat(path);

} catch (error) {
if (error.code != "ENOENT") throw error;
else return {status: 404, body: "File not found"};

by
if (stats.isDirectory()) {

return {body: (await readdir(path)).join("\n")};
} else {
return {body: createReadStream(path),
type: Llookup(path)};

}
3

Because it has to touch the disk and thus might take a while, stat is
asynchronous. Since we’re using promises rather than callback style, it has to
be imported from node: fs/promises instead of directly from node: fs.

When the file does not exist, stat will throw an error object with a code
property of "ENOENT". These somewhat obscure, Unix-inspired codes are how
you recognize error types in Node.

The stats object returned by stat tells us a number of things about a file,
such as its size (size property) and its modification date (mtime property).
Here we are interested in the question of whether it is a directory or a regular
file, which the isDirectory method tells us.

We use readdir to read the array of files in a directory and return it to the
client. For normal files, we create a readable stream with createReadStream
and return that as the body, along with the content type that the mime
package gives us for the file’s name.

The code to handle DELETE requests is slightly simpler.
import {rmdir, unlink} from "node:fs/promises";
methods.DELETE = async function(request) {

let path = urlPath(request.url);
lLet stats;

https://eloquentjavascript.net/20_node.html 16/21

27/06/2024, 18:49 Node.js :: Eloquent JavaScript

try {
stats = await stat(path);

} catch (error) {
if (error.code != "ENOENT") throw error;
else return {status: 204};

by

if (stats.isDirectory()) await rmdir(path);
else await unlink(path);
return {status: 204};

¥

When an HTTP response does not contain any data, the status code 204 (“no
content”) can be used to indicate this. Since the response to deletion doesn’t
need to transmit any information beyond whether the operation succeeded,
that is a sensible thing to return here.

You may be wondering why trying to delete a nonexistent file returns a
success status code rather than an error. When the file being deleted is not
there, you could say that the request’s objective is already fulfilled. The HTTP
standard encourages us to make requests idempotent, which means that
making the same request multiple times produces the same result as making
it once. In a way, if you try to delete something that’s already gone, the effect
you were trying to create has been achieved—the thing is no longer there.

This is the handler for PUT requests:
import {createWriteStream} from "node:fs";

function pipeStream(from, to) {
return new Promise((resolve, reject) => {
from.on("error", reject);
to.on("error", reject);
to.on("finish", resolve);
from.pipe(to);
1)
3

methods.PUT = async function(request) {
Let path = urlPath(request.url);
await pipeStream(request, createWriteStream(path));

https://eloquentjavascript.net/20_node.html 17/21

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
return {status: 204};
s

We don’t need to check whether the file exists this time—if it does, we’ll just
overwrite it. We again use pipe to move data from a readable stream to a
writable one, in this case from the request to the file. But since pipe isn’t
written to return a promise, we have to write a wrapper, pipeStream, that
creates a promise around the outcome of calling pipe.

When something goes wrong when opening the file, createWriteStream will
still return a stream, but that stream will fire an "error" event. The stream
from the request may also fail, for example if the network goes down. So we
wire up both streams’ "error" events to reject the promise. When pipe is
done, it will close the output stream, which causes it to fire a "finish" event.
That’s the point at which we can successfully resolve the promise (returning
nothing).

The full script for the server is available at
https://eloquentjavascript.net/code/file_server.mjs. You can download that
and, after installing its dependencies, run it with Node to start your own file
server. And, of course, you can modify and extend it to solve this chapter’s
exercises or to experiment.

The command line tool curl, widely available on Unix-like systems (such as
macOS and Linux), can be used to make HTTP requests. The following
session briefly tests our server. The -X option is used to set the request’s
method, and -d is used to include a request body.

$ curl http://localhost:8000/file.txt

File not found

$ curl -X PUT -d CONTENT http://localhost:8000/file.txt
$ curl http://localhost:8000/file.txt

CONTENT

$ curl -X DELETE http://localhost:8000/file.txt

$ curl http://localhost:8000/file.txt

File not found

The first request for file.txt fails since the file does not exist yet. The PUT
request creates the file, and behold, the next request successfully retrieves it.

https://eloquentjavascript.net/20_node.html 18/21

https://eloquentjavascript.net/code/file_server.mjs

27/06/2024, 18:49 Node.js :: Eloquent JavaScript

After deleting it with a DELETE request, the file is again missing.
SUMMARY

Node is a nice, small system that lets us run JavaScript in a nonbrowser
context. It was originally designed for network tasks to play the role of a node
in a network, but it lends itself to all kinds of scripting tasks. If writing
JavaScript is something you enjoy, automating tasks with Node may work
well for you.

NPM provides packages for everything you can think of (and quite a few
things you’d probably never think of), and it allows you to fetch and install
those packages with the npm program. Node comes with a number of built-in
modules, including the node: fs module for working with the file system and
the node :http module for running HTTP servers.

All input and output in Node is done asynchronously, unless you explicitly use
a synchronous variant of a function, such as readFileSync. Node originally
used callbacks for asynchronous functionality, but the node: fs/promises
package provides a promise-based interface to the file system.

EXERCISES
SEARCH TOOL

On Unix systems, there is a command line tool called grep that can be used
to quickly search files for a regular expression.

Write a Node script that can be run from the command line and acts
somewhat like grep. It treats its first command line argument as a regular
expression and treats any further arguments as files to search. It outputs the
names of any file whose content matches the regular expression.

When that works, extend it so that when one of the arguments is a directory,
it searches through all files in that directory and its subdirectories.

Use asynchronous or synchronous file system functions as you see fit. Setting
things up so that multiple asynchronous actions are requested at the same

https://eloquentjavascript.net/20_node.html 19/21

27/06/2024, 18:49 Node.js :: Eloquent JavaScript
time might speed things up a little, but not a huge amount, since most file
systems can read only one thing at a time.

» Display hints...

DIRECTORY CREATION

Though the DELETE method in our file server is able to delete directories
(using rmdir), the server currently does not provide any way to create a
directory.

Add support for the MKCOL method (“make collection”), which should create a
directory by calling mkdir from the node: fs module. MKCOL is not a widely
used HTTP method, but it does exist for this same purpose in the WebDAV
standard, which specifies a set of conventions on top of HTTP that make it
suitable for creating documents.

» Display hints...

A PUBLIC SPACE ON THE WEB

Since the file server serves up any kind of file and even includes the right
Content-Type header, you can use it to serve a website. Given that this server
allows everybody to delete and replace files, this would make for an
interesting kind of website: one that can be modified, improved, and
vandalized by everybody who takes the time to make the right HTTP request.

Write a basic HTML page that includes a simple JavaScript file. Put the files
in a directory served by the file server and open them in your browser.

Next, as an advanced exercise or even a weekend project, combine all the
knowledge you gained from this book to build a more user-friendly interface
for modifying the website—from inside the website.

Use an HTML form to edit the content of the files that make up the website,
allowing the user to update them on the server by using HTTP requests, as
described in Chapter 18.

Start by making only a single file editable. Then make it so that the user can
select which file to edit. Use the fact that our file server returns lists of files

https://eloquentjavascript.net/20_node.html 20/21

https://eloquentjavascript.net/18_http.html

27/06/2024, 18:49 Node.js :: Eloquent JavaScript

when reading a directory.

Don’t work directly in the code exposed by the file server, since if you make a
mistake, you are likely to damage the files there. Instead, keep your work
outside of the publicly accessible directory and copy it there when testing.

» Display hints...

« @ > ?

https://eloquentjavascript.net/20_node.html 21/21

https://eloquentjavascript.net/19_paint.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/21_skillsharing.html

