
◂ ● ▸ ?
Program Structure

In this chapter, we will start to do things that can actually be called
programming. We will expand our command of the JavaScript language
beyond the nouns and sentence fragments we’ve seen so far to the point
where we can express meaningful prose.

Expressions and statements

In Chapter 1, we made values and applied operators to them to get new
values. Creating values like this is the main substance of any JavaScript
program. But that substance has to be framed in a larger structure to be
useful. That’s what we’ll cover in this chapter.

A fragment of code that produces a value is called an expression. Every value
that is written literally (such as 22 or "psychoanalysis") is an expression.

And my heart glows bright red under my filmy, translucent skin and they have to
administer 10cc of JavaScript to get me to come back. (I respond well to toxins in the
blood.) Man, that stuff will kick the peaches right out your gills!”

“ ¶

_why, Why's (Poignant) Guide to Ruby—

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 1/20

https://eloquentjavascript.net/01_values.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/03_functions.html
https://eloquentjavascript.net/01_values.html

An expression between parentheses is also an expression, as is a binary
operator applied to two expressions or a unary operator applied to one.

This shows part of the beauty of a language-based interface. Expressions can
contain other expressions in a way similar to how subsentences in human
languages are nested—a subsentence can contain its own subsentences, and
so on. This allows us to build expressions that describe arbitrarily complex
computations.

If an expression corresponds to a sentence fragment, a JavaScript statement
corresponds to a full sentence. A program is a list of statements.

The simplest kind of statement is an expression with a semicolon after it. This
is a program:

1;
!false;

It is a useless program, though. An expression can be content to just produce
a value, which can then be used by the enclosing code. However, a statement
stands on its own, so if it doesn’t affect the world, it’s useless. It may display
something on the screen, as with console.log , or change the state of the
machine in a way that will affect the statements that come after it. These
changes are called side effects. The statements in the previous example just
produce the values 1 and true and then immediately throw them away. This
leaves no impression on the world at all. When you run this program, nothing
observable happens.

In some cases, JavaScript allows you to omit the semicolon at the end of a
statement. In other cases, it has to be there, or the next line will be treated as
part of the same statement. The rules for when it can be safely omitted are
somewhat complex and error prone. So in this book, every statement that
needs a semicolon will always get one. I recommend you do the same, at least
until you’ve learned more about the subtleties of missing semicolons.

Bindings

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 2/20

How does a program keep an internal state? How does it remember things?
We have seen how to produce new values from old values, but this does not
change the old values, and the new value must be used immediately or it will
dissipate again. To catch and hold values, JavaScript provides a thing called a
binding, or variable.

let caught = 5 * 5;

That gives us a second kind of statement. The special word (keyword) let
indicates that this sentence is going to define a binding. It is followed by the
name of the binding and, if we want to immediately give it a value, by an =
operator and an expression.

The example creates a binding called caught and uses it to grab hold of the
number that is produced by multiplying 5 by 5.

After a binding has been defined, its name can be used as an expression. The
value of such an expression is the value the binding currently holds. Here’s an
example:

let ten = 10;

console.log(ten * ten);
// → 100

When a binding points at a value, that does not mean it is tied to that value
forever. The = operator can be used at any time on existing bindings to
disconnect them from their current value and have them point to a new one:

let mood = "light";
console.log(mood);

// → light
mood = "dark";
console.log(mood);

// → dark

You should imagine bindings as tentacles rather than boxes. They do not
contain values; they grasp them—two bindings can refer to the same value. A
program can access only the values to which it still has a reference. When you

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 3/20

need to remember something, you either grow a tentacle to hold on to it or
reattach one of your existing tentacles to it.

Let’s look at another example. To remember the number of dollars that Luigi
still owes you, you create a binding. When he pays back $35, you give this
binding a new value.

let luigisDebt = 140;
luigisDebt = luigisDebt - 35;

console.log(luigisDebt);
// → 105

When you define a binding without giving it a value, the tentacle has nothing
to grasp, so it ends in thin air. If you ask for the value of an empty binding,
you’ll get the value undefined .

A single let statement may define multiple bindings. The definitions must be
separated by commas:

let one = 1, two = 2;
console.log(one + two);

// → 3

The words var and const can also be used to create bindings, in a similar
fashion to let .

var name = "Ayda";
const greeting = "Hello ";

console.log(greeting + name);
// → Hello Ayda

The first of these, var (short for “variable”), is the way bindings were
declared in pre-2015 JavaScript, when let didn’t exist yet. I’ll get back to the
precise way it differs from let in the next chapter. For now, remember that it
mostly does the same thing, but we’ll rarely use it in this book because it
behaves oddly in some situations.

The word const stands for constant. It defines a constant binding, which
points at the same value for as long as it lives. This is useful for bindings that
just give a name to a value so that you can easily refer to it later.

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 4/20

https://eloquentjavascript.net/03_functions.html

Binding names

Binding names can be any sequence of one or more letters. Digits can be part
of binding names—catch22 is a valid name, for example—but the name must
not start with a digit. A binding name may include dollar signs ($) or
underscores (_) but no other punctuation or special characters.

Words with a special meaning, such as let , are keywords, and may not be
used as binding names. There are also a number of words that are “reserved
for use” in future versions of JavaScript, which also can’t be used as binding
names. The full list of keywords and reserved words is rather long:

break case catch class const continue debugger default

delete do else enum export extends false finally for
function if implements import interface in instanceof let
new package private protected public return static super

switch this throw true try typeof var void while with yield

Don’t worry about memorizing this list. When creating a binding produces an
unexpected syntax error, check whether you’re trying to define a reserved
word.

The environment

The collection of bindings and their values that exist at a given time is called
the environment. When a program starts up, this environment is not empty.
It always contains bindings that are part of the language standard, and most
of the time, it also has bindings that provide ways to interact with the
surrounding system. For example, in a browser, there are functions to interact
with the currently loaded website and to read mouse and keyboard input.

Functions

A lot of the values provided in the default environment have the type function.
A function is a piece of program wrapped in a value. Such values can be
applied in order to run the wrapped program. For example, in a browser
environment, the binding prompt holds a function that shows a little dialog
asking for user input. It is used like this:

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 5/20

prompt("Enter passcode");

Executing a function is called invoking, calling, or applying it. You can call a
function by putting parentheses after an expression that produces a function
value. Usually you’ll directly use the name of the binding that holds the
function. The values between the parentheses are given to the program inside
the function. In the example, the prompt function uses the string that we give
it as the text to show in the dialog box. Values given to functions are called
arguments. Different functions might need a different number or different
types of arguments.

The prompt function isn’t used much in modern web programming, mostly
because you have no control over the way the resulting dialog looks, but it can
be helpful in toy programs and experiments.

The console.log function

In the examples, I used console.log to output values. Most JavaScript
systems (including all modern web browsers and Node.js) provide a
console.log function that writes out its arguments to some text output
device. In browsers, the output lands in the JavaScript console. This part of
the browser interface is hidden by default, but most browsers open it when
you press F12 or, on a Mac, �������-������-I. If that does not work, search
through the menus for an item named Developer Tools or similar.

When running the examples (or your own code) on the pages of this book,
console.log output will be shown after the example, instead of in the
browser’s JavaScript console.

let x = 30;
console.log("the value of x is", x);

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 6/20

// → the value of x is 30

Though binding names cannot contain period characters, console.log does
have one. This is because console.log isn’t a simple binding, but an
expression that retrieves the log property from the value held by the
console binding. We’ll find out exactly what this means in Chapter 4.

Return values

Showing a dialog box or writing text to the screen is a side effect. Many
functions are useful because of the side effects they produce. Functions may
also produce values, in which case they don’t need to have a side effect to be
useful. For example, the function Math.max takes any amount of number
arguments and gives back the greatest.

console.log(Math.max(2, 4));
// → 4

When a function produces a value, it is said to return that value. Anything
that produces a value is an expression in JavaScript, which means that
function calls can be used within larger expressions. In the following code, a
call to Math.min , which is the opposite of Math.max , is used as part of a plus
expression:

console.log(Math.min(2, 4) + 100);

// → 102

Chapter 3 will explain how to write your own functions.

Control flow

When your program contains more than one statement, the statements are
executed as though they were a story, from top to bottom. For example, the
following program has two statements. The first asks the user for a number,
and the second, which is executed after the first, shows the square of that
number:

let theNumber = Number(prompt("Pick a number"));
console.log("Your number is the square root of " +

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 7/20

https://eloquentjavascript.net/04_data.html#properties
https://eloquentjavascript.net/03_functions.html

 theNumber * theNumber);

The function Number converts a value to a number. We need that conversion
because the result of prompt is a string value, and we want a number. There
are similar functions called String and Boolean that convert values to those
types.

Here is the rather trivial schematic representation of straight-line control
flow:

Conditional execution

Not all programs are straight roads. We may, for example, want to create a
branching road where the program takes the proper branch based on the
situation at hand. This is called conditional execution.

Conditional execution is created with the if keyword in JavaScript. In the
simple case, we want some code to be executed if, and only if, a certain
condition holds. We might, for example, want to show the square of the input
only if the input is actually a number:

let theNumber = Number(prompt("Pick a number"));

if (!Number.isNaN(theNumber)) {
 console.log("Your number is the square root of " +
 theNumber * theNumber);

}

With this modification, if you enter “parrot”, no output is shown.

The if keyword executes or skips a statement depending on the value of a
Boolean expression. The deciding expression is written after the keyword,
between parentheses, followed by the statement to execute.

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 8/20

The Number.isNaN function is a standard JavaScript function that returns
true only if the argument it is given is NaN . The Number function happens to
return NaN when you give it a string that doesn’t represent a valid number.
Thus, the condition translates to “unless theNumber is not-a-number, do
this”.

The statement after the if is wrapped in braces ({ and }) in this example.
The braces can be used to group any number of statements into a single
statement, called a block. You could also have omitted them in this case, since
they hold only a single statement, but to avoid having to think about whether
they are needed, most JavaScript programmers use them in every wrapped
statement like this. We’ll mostly follow that convention in this book, except
for the occasional one-liner.

if (1 + 1 == 2) console.log("It's true");
// → It's true

You often won’t just have code that executes when a condition holds true, but
also code that handles the other case. This alternate path is represented by the
second arrow in the diagram. You can use the else keyword, together with
if , to create two separate, alternative execution paths:

let theNumber = Number(prompt("Pick a number"));
if (!Number.isNaN(theNumber)) {
 console.log("Your number is the square root of " +
 theNumber * theNumber);

} else {
 console.log("Hey. Why didn't you give me a number?");
}

If you have more than two paths to choose from, you can “chain” multiple
if/else pairs together. Here’s an example:

let num = Number(prompt("Pick a number"));

if (num < 10) {

 console.log("Small");
} else if (num < 100) {
 console.log("Medium");
} else {

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 9/20

 console.log("Large");
}

The program will first check whether num is less than 10. If it is, it chooses
that branch, shows "Small" , and is done. If it isn’t, it takes the else branch,
which itself contains a second if . If the second condition (< 100) holds, that
means the number is at least 10 but below 100, and "Medium" is shown. If it
doesn’t, the second and last else branch is chosen.

The schema for this program looks something like this:

while and do loops

Consider a program that outputs all even numbers from 0 to 12. One way to
write this is as follows:

console.log(0);

console.log(2);
console.log(4);
console.log(6);
console.log(8);

console.log(10);
console.log(12);

That works, but the idea of writing a program is to make something less work,
not more. If we needed all even numbers less than 1,000, this approach would
be unworkable. What we need is a way to run a piece of code multiple times.
This form of control flow is called a loop.

Looping control flow allows us to go back to some point in the program where
we were before and repeat it with our current program state. If we combine

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 10/20

this with a binding that counts, we can do something like this:

let number = 0;
while (number <= 12) {

 console.log(number);
 number = number + 2;
}
// → 0
// → 2
// … etcetera

A statement starting with the keyword while creates a loop. The word while
is followed by an expression in parentheses and then a statement, much like
if . The loop keeps entering that statement as long as the expression produces
a value that gives true when converted to Boolean.

The number binding demonstrates the way a binding can track the progress of
a program. Every time the loop repeats, number gets a value that is 2 more
than its previous value. At the beginning of every repetition, it is compared
with the number 12 to decide whether the program’s work is finished.

As an example that actually does something useful, we can now write a
program that calculates and shows the value of 210 (2 to the 10th power). We
use two bindings: one to keep track of our result and one to count how often
we have multiplied this result by 2. The loop tests whether the second binding
has reached 10 yet and, if not, updates both bindings.

let result = 1;

let counter = 0;
while (counter < 10) {
 result = result * 2;

 counter = counter + 1;
}
console.log(result);
// → 1024

The counter could also have started at 1 and checked for <= 10 , but for
reasons that will become apparent in Chapter 4, it is a good idea to get used to
counting from 0.

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 11/20

https://eloquentjavascript.net/04_data.html#array_indexing

Note that JavaScript also has an operator for exponentiation (2 ** 10),
which you would use to compute this in real code—but that would have ruined
the example.

A do loop is a control structure similar to a while loop. It differs only on one
point: a do loop always executes its body at least once, and it starts testing
whether it should stop only after that first execution. To reflect this, the test
appears after the body of the loop:

let yourName;
do {

 yourName = prompt("Who are you?");
} while (!yourName);
console.log("Hello " + yourName);

This program will force you to enter a name. It will ask again and again until
it gets something that is not an empty string. Applying the ! operator will
convert a value to Boolean type before negating it, and all strings except ""
convert to true . This means the loop continues going round until you provide
a non-empty name.

Indenting Code

In the examples, I’ve been adding spaces in front of statements that are part
of some larger statement. These spaces are not required—the computer will
accept the program just fine without them. In fact, even the line breaks in
programs are optional. You could write a program as a single long line if you
felt like it.

The role of this indentation inside blocks is to make the structure of the code
stand out to human readers. In code where new blocks are opened inside
other blocks, it can become hard to see where one block ends and another
begins. With proper indentation, the visual shape of a program corresponds
to the shape of the blocks inside it. I like to use two spaces for every open
block, but tastes differ—some people use four spaces, and some people use tab
characters. The important thing is that each new block adds the same amount
of space.

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 12/20

if (false != true) {
 console.log("That makes sense.");

 if (1 < 2) {
 console.log("No surprise there.");
 }
}

Most code editor programs (including the one in this book) will help by
automatically indenting new lines the proper amount.

for loops

Many loops follow the pattern shown in the while examples. First a “counter”
binding is created to track the progress of the loop. Then comes a while loop,
usually with a test expression that checks whether the counter has reached its
end value. At the end of the loop body, the counter is updated to track
progress.

Because this pattern is so common, JavaScript and similar languages provide
a slightly shorter and more comprehensive form, the for loop:

for (let number = 0; number <= 12; number = number + 2) {
 console.log(number);

}
// → 0
// → 2
// … etcetera

This program is exactly equivalent to the earlier even-number-printing
example. The only change is that all the statements that are related to the
“state” of the loop are grouped together after for .

The parentheses after a for keyword must contain two semicolons. The part
before the first semicolon initializes the loop, usually by defining a binding.
The second part is the expression that checks whether the loop must continue.
The final part updates the state of the loop after every iteration. In most cases,
this is shorter and clearer than a while construct.

This is the code that computes 210 using for instead of while :

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 13/20

let result = 1;
for (let counter = 0; counter < 10; counter = counter + 1) {

 result = result * 2;
}
console.log(result);
// → 1024

Breaking Out of a Loop

Having the looping condition produce false is not the only way a loop can
finish. The break statement has the effect of immediately jumping out of the
enclosing loop. Its use is demonstrated in the following program, which finds
the first number that is both greater than or equal to 20 and divisible by 7:

for (let current = 20; ; current = current + 1) {
 if (current % 7 == 0) {

 console.log(current);
 break;
 }

}
// → 21

Using the remainder (%) operator is an easy way to test whether a number is
divisible by another number. If it is, the remainder of their division is zero.

The for construct in the example does not have a part that checks for the end
of the loop. This means that the loop will never stop unless the break
statement inside is executed.

If you were to remove that break statement or you accidentally write an end
condition that always produces true , your program would get stuck in an
infinite loop. A program stuck in an infinite loop will never finish running,
which is usually a bad thing.

If you create an infinite loop in one of the examples on these pages, you’ll
usually be asked whether you want to stop the script after a few seconds. If
that fails, you will have to close the tab that you’re working in to recover.

The continue keyword is similar to break in that it influences the progress
of a loop. When continue is encountered in a loop body, control jumps out of

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 14/20

the body and continues with the loop’s next iteration.

Updating bindings succinctly

Especially when looping, a program often needs to “update” a binding to hold
a value based on that binding’s previous value.

counter = counter + 1;

JavaScript provides a shortcut for this:

counter += 1;

Similar shortcuts work for many other operators, such as result *= 2 to
double result or counter -= 1 to count downward.

This allows us to further shorten our counting example:

for (let number = 0; number <= 12; number += 2) {
 console.log(number);

}

For counter += 1 and counter -= 1 , there are even shorter equivalents:
counter++ and counter-- .

Dispatching on a value with switch

It is not uncommon for code to look like this:

if (x == "value1") action1();
else if (x == "value2") action2();

else if (x == "value3") action3();
else defaultAction();

There is a construct called switch that is intended to express such a
“dispatch” in a more direct way. Unfortunately, the syntax JavaScript uses for
this (which it inherited from the C/Java line of programming languages) is
somewhat awkward—a chain of if statements may look better. Here is an
example:

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 15/20

switch (prompt("What is the weather like?")) {
 case "rainy":

 console.log("Remember to bring an umbrella.");
 break;
 case "sunny":
 console.log("Dress lightly.");

 case "cloudy":
 console.log("Go outside.");
 break;

 default:
 console.log("Unknown weather type!");
 break;

}

You may put any number of case labels inside the block opened by switch .
The program will start executing at the label that corresponds to the value
that switch was given, or at default if no matching value is found. It will
continue executing, even across other labels, until it reaches a break
statement. In some cases, such as the "sunny" case in the example, this can
be used to share some code between cases (it recommends going outside for
both sunny and cloudy weather). Be careful, though—it is easy to forget such a
break , which will cause the program to execute code you do not want
executed.

Capitalization

Binding names may not contain spaces, yet it is often helpful to use multiple
words to clearly describe what the binding represents. These are pretty much
your choices for writing a binding name with several words in it:

fuzzylittleturtle

fuzzy_little_turtle
FuzzyLittleTurtle
fuzzyLittleTurtle

The first style can be hard to read. I rather like the look of the underscores,
though that style is a little painful to type. The standard JavaScript functions,
and most JavaScript programmers, follow the final style—they capitalize
every word except the first. It is not hard to get used to little things like that,

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 16/20

and code with mixed naming styles can be jarring to read, so we follow this
convention.

In a few cases, such as the Number function, the first letter of a binding is also
capitalized. This was done to mark this function as a constructor. It will
become clear what a constructor is in Chapter 6. For now, the important thing
is to not be bothered by this apparent lack of consistency.

Comments

Often, raw code does not convey all the information you want a program to
convey to human readers, or it conveys it in such a cryptic way that people
might not understand it. At other times, you might just want to include some
related thoughts as part of your program. This is what comments are for.

A comment is a piece of text that is part of a program but is completely
ignored by the computer. JavaScript has two ways of writing comments. To
write a single-line comment, you can use two slash characters (//) and then
the comment text after it:

let accountBalance = calculateBalance(account);

// It's a green hollow where a river sings
accountBalance.adjust();
// Madly catching white tatters in the grass.

let report = new Report();
// Where the sun on the proud mountain rings:
addToReport(accountBalance, report);
// It's a little valley, foaming like light in a glass.

A // comment goes only to the end of the line. A section of text between /*
and */ will be ignored in its entirety, regardless of whether it contains line
breaks. This is useful for adding blocks of information about a file or a chunk
of program:

/*
 I first found this number scrawled on the back of an old
 notebook. Since then, it has often dropped by, showing up in

 phone numbers and the serial numbers of products that I've
 bought. It obviously likes me, so I've decided to keep it.

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 17/20

https://eloquentjavascript.net/06_object.html#constructors

*/
const myNumber = 11213;

Summary

You now know that a program is built out of statements, which themselves
sometimes contain more statements. Statements tend to contain expressions,
which themselves can be built out of smaller expressions.

Putting statements after one another gives you a program that is executed
from top to bottom. You can introduce disturbances in the flow of control by
using conditional (if , else , and switch) and looping (while , do , and for)
statements.

Bindings can be used to file pieces of data under a name, and they are useful
for tracking state in your program. The environment is the set of bindings that
are defined. JavaScript systems always put a number of useful standard
bindings into your environment.

Functions are special values that encapsulate a piece of program. You can
invoke them by writing functionName(argument1, argument2) . Such a
function call is an expression and may produce a value.

Exercises

If you are unsure how to test your solutions to the exercises, refer to the
Introduction.

Each exercise starts with a problem description. Read this description and try
to solve the exercise. If you run into problems, consider reading the hints after
the exercise. You can find full solutions to the exercises online at
https://eloquentjavascript.net/code. If you want to learn something from the
exercises, I recommend looking at the solutions only after you’ve solved the
exercise, or at least after you’ve attacked it long and hard enough to have a
slight headache.

Looping a triangle

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 18/20

https://eloquentjavascript.net/00_intro.html
https://eloquentjavascript.net/code#2

Write a loop that makes seven calls to console.log to output the following
triangle:

#
##

###
####
#####
######

#######

It may be useful to know that you can find the length of a string by writing
.length after it.

let abc = "abc";
console.log(abc.length);

// → 3

Most exercises contain a piece of code that you can modify to solve the
exercise. Remember that you can click code blocks to edit them.

// Your code here.

Display hints...

FizzBuzz

Write a program that uses console.log to print all the numbers from 1 to
100, with two exceptions. For numbers divisible by 3, print "Fizz" instead of
the number, and for numbers divisible by 5 (and not 3), print "Buzz" instead.

When you have that working, modify your program to print "FizzBuzz" for
numbers that are divisible by both 3 and 5 (and still print "Fizz" or "Buzz"
for numbers divisible by only one of those).

(This is actually an interview question that has been claimed to weed out a
significant percentage of programmer candidates. So if you solved it, your
labor market value just went up.)

// Your code here.

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 19/20

Display hints...

Chessboard

Write a program that creates a string that represents an 8×8 grid, using
newline characters to separate lines. At each position of the grid there is
either a space or a "#" character. The characters should form a chessboard.

Passing this string to console.log should show something like this:

 # # # #

 # # # #

 # # # #

 # # # #
#

When you have a program that generates this pattern, define a binding size
= 8 and change the program so that it works for any size , outputting a grid
of the given width and height.

// Your code here.

Display hints...
◂ ● ▸ ?

27/06/2024, 18:43 Program Structure :: Eloquent JavaScript

https://eloquentjavascript.net/02_program_structure.html 20/20

https://eloquentjavascript.net/01_values.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/03_functions.html

