
◂ ● ▸ ?
Project: A Pixel Art Editor

The material from the previous chapters gives you all the elements you need
to build a basic web application. In this chapter, we will do just that.

Our application will be a pixel-drawing program that allows you to modify a
picture pixel by pixel by manipulating a zoomed-in view of it, shown as a grid
of colored squares. You can use the program to open image files, scribble on
them with your mouse or other pointer device, and save them. This is what it
will look like:

I look at the many colors before me. I look at my blank canvas. Then, I try to apply
colors like words that shape poems, like notes that shape music.”

“

Joan Miró—

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 1/26

https://eloquentjavascript.net/18_http.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/20_node.html

Painting on a computer is great. You don’t need to worry about materials,
skill, or talent. You just start smearing and see where you end up.

Components

The interface for the application shows a big <canvas> element on top, with a
number of form fields below it. The user draws on the picture by selecting a
tool from a <select> field and then clicking, touching, or dragging across the
canvas. There are tools for drawing single pixels or rectangles, for filling an
area, and for picking a color from the picture.

We will structure the editor interface as a number of components, objects that
are responsible for a piece of the DOM and that may contain other
components inside them.

The state of the application consists of the current picture, the selected tool,
and the selected color. We’ll set things up so that the state lives in a single
value and the interface components always base the way they look on the
current state.

To see why this is important, let’s consider the alternative—distributing pieces
of state throughout the interface. Up to a certain point, this is easier to
program. We can just put in a color field and read its value when we need to
know the current color.

But then we add the color picker—a tool that lets you click the picture to select
the color of a given pixel. To keep the color field showing the correct color,

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 2/26

that tool would have to know that the color field exists and update it whenever
it picks a new color. If you ever add another place that makes the color visible
(maybe the mouse cursor could show it), you have to update your color-
changing code to keep that synchronized as well.

In effect, this creates a problem where each part of the interface needs to
know about all other parts, which is not very modular. For small applications
like the one in this chapter, that may not be a problem. For bigger projects, it
can turn into a real nightmare.

To avoid this nightmare on principle, we’re going to be strict about data flow.
There is a state, and the interface is drawn based on that state. An interface
component may respond to user actions by updating the state, at which point
the components get a chance to synchronize themselves with this new state.

In practice, each component is set up so that when it is given a new state, it
also notifies its child components, insofar as those need to be updated. Setting
this up is a bit of a hassle. Making this more convenient is the main selling
point of many browser programming libraries. But for a small application like
this, we can do it without such infrastructure.

Updates to the state are represented as objects, which we’ll call actions.
Components may create such actions and dispatch them—give them to a
central state management function. That function computes the next state,
after which the interface components update themselves to this new state.

We’re taking the messy task of running a user interface and applying structure
to it. Though the DOM-related pieces are still full of side effects, they are held
up by a conceptually simple backbone: the state update cycle. The state
determines what the DOM looks like, and the only way DOM events can
change the state is by dispatching actions to the state.

There are many variants of this approach, each with its own benefits and
problems, but their central idea is the same: state changes should go through
a single well-defined channel, not happen all over the place.

Our components will be classes conforming to an interface. Their constructor
is given a state—which may be the whole application state or some smaller

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 3/26

value if it doesn’t need access to everything—and uses that to build up a dom
property. This is the DOM element that represents the component. Most
constructors will also take some other values that won’t change over time,
such as the function they can use to dispatch an action.

Each component has a syncState method that is used to synchronize it to a
new state value. The method takes one argument, the state, which is of the
same type as the first argument to its constructor.

The state

The application state will be an object with picture , tool , and color
properties. The picture is itself an object that stores the width, height, and
pixel content of the picture. The pixels are stored in a single array, row by
row, from top to bottom.

class Picture {

 constructor(width, height, pixels) {
 this.width = width;
 this.height = height;

 this.pixels = pixels;
 }
 static empty(width, height, color) {
 let pixels = new Array(width * height).fill(color);

 return new Picture(width, height, pixels);
 }
 pixel(x, y) {

 return this.pixels[x + y * this.width];
 }
 draw(pixels) {

 let copy = this.pixels.slice();
 for (let {x, y, color} of pixels) {
 copy[x + y * this.width] = color;
 }

 return new Picture(this.width, this.height, copy);
 }
}

We want to be able to treat a picture as an immutable value, for reasons we’ll
get back to later in the chapter. But we also sometimes need to update a whole
bunch of pixels at a time. To be able to do that, the class has a draw method

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 4/26

that expects an array of updated pixels—objects with x , y , and color
properties—and creates a new picture with those pixels overwritten. This
method uses slice without arguments to copy the entire pixel array—the
start of the slice defaults to 0, and the end defaults to the array’s length.

The empty method uses two pieces of array functionality that we haven’t seen
before. The Array constructor can be called with a number to create an
empty array of the given length. The fill method can then be used to fill this
array with a given value. These are used to create an array in which all pixels
have the same color.

Colors are stored as strings containing traditional CSS color codes made up of
a hash sign (#) followed by six hexadecimal (base-16) digits—two for the red
component, two for the green component, and two for the blue component.
This is a somewhat cryptic and inconvenient way to write colors, but it is the
format the HTML color input field uses, and it can be used in the fillStyle
property of a canvas drawing context, so for the ways we’ll use colors in this
program, it is practical enough.

Black, where all components are zero, is written "#000000" , and bright pink
looks like "#ff00ff" , where the red and blue components have the
maximum value of 255, written ff in hexadecimal digits (which use a to f to
represent digits 10 to 15).

We’ll allow the interface to dispatch actions as objects whose properties
overwrite the properties of the previous state. The color field, when the user
changes it, could dispatch an object like {color: field.value} , from which
this update function can compute a new state.

function updateState(state, action) {
 return {...state, ...action};

}

This pattern, in which object spread is used to first add the properties an
existing object and then override some of those, is common in JavaScript code
that uses immutable objects.

DOM building

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 5/26

One of the main things that interface components do is create DOM structure.
We again don’t want to directly use the verbose DOM methods for that, so
here’s a slightly expanded version of the elt function:

function elt(type, props, ...children) {
 let dom = document.createElement(type);

 if (props) Object.assign(dom, props);
 for (let child of children) {
 if (typeof child != "string") dom.appendChild(child);
 else dom.appendChild(document.createTextNode(child));

 }
 return dom;
}

The main difference between this version and the one we used in Chapter 16
is that it assigns properties to DOM nodes, not attributes. This means we
can’t use it to set arbitrary attributes, but we can use it to set properties whose
value isn’t a string, such as onclick , which can be set to a function to register
a click event handler.

This allows this convenient style for registering event handlers:

<body>
 <script>
 document.body.appendChild(elt("button", {

 onclick: () => console.log("click")
 }, "The button"));
 </script>
</body>

The canvas

The first component we’ll define is the part of the interface that displays the
picture as a grid of colored boxes. This component is responsible for two
things: showing a picture and communicating pointer events on that picture
to the rest of the application.

As such, we can define it as a component that only knows about the current
picture, not the whole application state. Because it doesn’t know how the
application as a whole works, it cannot directly dispatch actions. Rather,

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 6/26

https://eloquentjavascript.net/16_game.html#domdisplay

when responding to pointer events, it calls a callback function provided by the
code that created it, which will handle the application-specific parts.

const scale = 10;

class PictureCanvas {
 constructor(picture, pointerDown) {
 this.dom = elt("canvas", {
 onmousedown: event => this.mouse(event, pointerDown),

 ontouchstart: event => this.touch(event, pointerDown)
 });
 this.syncState(picture);

 }
 syncState(picture) {
 if (this.picture == picture) return;

 this.picture = picture;
 drawPicture(this.picture, this.dom, scale);
 }
}

We draw each pixel as a 10-by-10 square, as determined by the scale
constant. To avoid unnecessary work, the component keeps track of its
current picture and does a redraw only when syncState is given a new
picture.

The actual drawing function sets the size of the canvas based on the scale and
picture size and fills it with a series of squares, one for each pixel.

function drawPicture(picture, canvas, scale) {
 canvas.width = picture.width * scale;
 canvas.height = picture.height * scale;

 let cx = canvas.getContext("2d");

 for (let y = 0; y < picture.height; y++) {

 for (let x = 0; x < picture.width; x++) {
 cx.fillStyle = picture.pixel(x, y);
 cx.fillRect(x * scale, y * scale, scale, scale);
 }

 }
}

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 7/26

When the left mouse button is pressed while the mouse is over the picture
canvas, the component calls the pointerDown callback, giving it the position
of the pixel that was clicked—in picture coordinates. This will be used to
implement mouse interaction with the picture. The callback may return
another callback function to be notified when the pointer is moved to a
different pixel while the button is held down.

PictureCanvas.prototype.mouse = function(downEvent, onDown) {
 if (downEvent.button != 0) return;

 let pos = pointerPosition(downEvent, this.dom);
 let onMove = onDown(pos);
 if (!onMove) return;
 let move = moveEvent => {

 if (moveEvent.buttons == 0) {
 this.dom.removeEventListener("mousemove", move);
 } else {

 let newPos = pointerPosition(moveEvent, this.dom);
 if (newPos.x == pos.x && newPos.y == pos.y) return;
 pos = newPos;

 onMove(newPos);
 }
 };
 this.dom.addEventListener("mousemove", move);

};

function pointerPosition(pos, domNode) {

 let rect = domNode.getBoundingClientRect();
 return {x: Math.floor((pos.clientX - rect.left) / scale),
 y: Math.floor((pos.clientY - rect.top) / scale)};

}

Since we know the size of the pixels and we can use getBoundingClientRect
to find the position of the canvas on the screen, it is possible to go from mouse
event coordinates (clientX and clientY) to picture coordinates. These are
always rounded down so that they refer to a specific pixel.

With touch events, we have to do something similar, but using different
events and making sure we call preventDefault on the "touchstart" event
to prevent panning.

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 8/26

PictureCanvas.prototype.touch = function(startEvent,
 onDown) {

 let pos = pointerPosition(startEvent.touches[0], this.dom);
 let onMove = onDown(pos);
 startEvent.preventDefault();
 if (!onMove) return;

 let move = moveEvent => {
 let newPos = pointerPosition(moveEvent.touches[0],
 this.dom);

 if (newPos.x == pos.x && newPos.y == pos.y) return;
 pos = newPos;
 onMove(newPos);

 };
 let end = () => {
 this.dom.removeEventListener("touchmove", move);
 this.dom.removeEventListener("touchend", end);

 };
 this.dom.addEventListener("touchmove", move);
 this.dom.addEventListener("touchend", end);

};

For touch events, clientX and clientY aren’t available directly on the event
object, but we can use the coordinates of the first touch object in the touches
property.

The application

To make it possible to build the application piece by piece, we’ll implement
the main component as a shell around a picture canvas and a dynamic set of
tools and controls that we pass to its constructor.

The controls are the interface elements that appear below the picture. They’ll
be provided as an array of component constructors.

The tools do things like drawing pixels or filling in an area. The application
shows the set of available tools as a <select> field. The currently selected
tool determines what happens when the user interacts with the picture with a
pointer device. The set of available tools is provided as an object that maps
the names that appear in the drop-down field to functions that implement the
tools. Such functions get a picture position, a current application state, and a

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 9/26

dispatch function as arguments. They may return a move handler function
that gets called with a new position and a current state when the pointer
moves to a different pixel.

class PixelEditor {
 constructor(state, config) {

 let {tools, controls, dispatch} = config;
 this.state = state;

 this.canvas = new PictureCanvas(state.picture, pos => {

 let tool = tools[this.state.tool];
 let onMove = tool(pos, this.state, dispatch);
 if (onMove) return pos => onMove(pos, this.state);

 });
 this.controls = controls.map(
 Control => new Control(state, config));

 this.dom = elt("div", {}, this.canvas.dom, elt("br"),
 ...this.controls.reduce(
 (a, c) => a.concat(" ", c.dom), []));
 }

 syncState(state) {
 this.state = state;
 this.canvas.syncState(state.picture);

 for (let ctrl of this.controls) ctrl.syncState(state);
 }
}

The pointer handler given to PictureCanvas calls the currently selected tool
with the appropriate arguments and, if that returns a move handler, adapts it
to also receive the state.

All controls are constructed and stored in this.controls so that they can be
updated when the application state changes. The call to reduce introduces
spaces between the controls’ DOM elements. That way they don’t look so
pressed together.

The first control is the tool selection menu. It creates a <select> element
with an option for each tool and sets up a "change" event handler that
updates the application state when the user selects a different tool.

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 10/26

class ToolSelect {
 constructor(state, {tools, dispatch}) {

 this.select = elt("select", {
 onchange: () => dispatch({tool: this.select.value})
 }, ...Object.keys(tools).map(name => elt("option", {
 selected: name == state.tool

 }, name)));
 this.dom = elt("label", null, "🖌 Tool: ", this.select);
 }

 syncState(state) { this.select.value = state.tool; }
}

By wrapping the label text and the field in a <label> element, we tell the
browser that the label belongs to that field so that you can, for example, click
the label to focus the field.

We also need to be able to change the color, so let’s add a control for that. An
HTML <input> element with a type attribute of color gives us a form field
that is specialized for selecting colors. Such a field’s value is always a CSS
color code in "#RRGGBB" format (red, green, and blue components, two digits
per color). The browser will show a color picker interface when the user
interacts with it.

This control creates such a field and wires it up to stay synchronized with the
application state’s color property.

class ColorSelect {

 constructor(state, {dispatch}) {
 this.input = elt("input", {
 type: "color",
 value: state.color,

 onchange: () => dispatch({color: this.input.value})
 });
 this.dom = elt("label", null, "🎨 Color: ", this.input);

 }
 syncState(state) { this.input.value = state.color; }
}

Drawing tools

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 11/26

Before we can draw anything, we need to implement the tools that will control
the functionality of mouse or touch events on the canvas.

The most basic tool is the draw tool, which changes any pixel you click or tap
to the currently selected color. It dispatches an action that updates the picture
to a version in which the pointed-at pixel is given the currently selected color.

function draw(pos, state, dispatch) {
 function drawPixel({x, y}, state) {

 let drawn = {x, y, color: state.color};
 dispatch({picture: state.picture.draw([drawn])});
 }
 drawPixel(pos, state);

 return drawPixel;
}

The function immediately calls the drawPixel function but then also returns
it so that it’s called again for newly touched pixels when the user drags or
swipes over the picture.

To draw larger shapes, it can be useful to quickly create rectangles. The
rectangle tool draws a rectangle between the point where you start dragging
and the point that you drag to.

function rectangle(start, state, dispatch) {

 function drawRectangle(pos) {
 let xStart = Math.min(start.x, pos.x);
 let yStart = Math.min(start.y, pos.y);

 let xEnd = Math.max(start.x, pos.x);
 let yEnd = Math.max(start.y, pos.y);
 let drawn = [];
 for (let y = yStart; y <= yEnd; y++) {

 for (let x = xStart; x <= xEnd; x++) {
 drawn.push({x, y, color: state.color});
 }

 }
 dispatch({picture: state.picture.draw(drawn)});
 }

 drawRectangle(start);
 return drawRectangle;
}

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 12/26

An important detail in this implementation is that when dragging, the
rectangle is redrawn on the picture from the original state. That way, you can
make the rectangle larger and smaller again while creating it, without the
intermediate rectangles sticking around in the final picture. This is one of the
reasons why immutable picture objects are useful—we’ll see another reason
later.

Implementing flood fill is somewhat more involved. This is a tool that fills the
pixel under the pointer and all adjacent pixels that have the same color.
“Adjacent” means directly horizontally or vertically adjacent, not diagonally.
This picture illustrates the set of pixels colored when the flood fill tool is used
at the marked pixel:

Interestingly, the way we’ll do this looks a bit like the pathfinding code from
Chapter 7. Whereas that code searched through a graph to find a route, this
code searches through a grid to find all “connected” pixels. The problem of
keeping track of a branching set of possible routes is similar.

const around = [{dx: -1, dy: 0}, {dx: 1, dy: 0},
 {dx: 0, dy: -1}, {dx: 0, dy: 1}];

function fill({x, y}, state, dispatch) {
 let targetColor = state.picture.pixel(x, y);
 let drawn = [{x, y, color: state.color}];

 let visited = new Set();
 for (let done = 0; done < drawn.length; done++) {
 for (let {dx, dy} of around) {

 let x = drawn[done].x + dx, y = drawn[done].y + dy;
 if (x >= 0 && x < state.picture.width &&
 y >= 0 && y < state.picture.height &&

 !visited.has(x + "," + y) &&
 state.picture.pixel(x, y) == targetColor) {
 drawn.push({x, y, color: state.color});

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 13/26

https://eloquentjavascript.net/07_robot.html

 visited.add(x + "," + y);
 }

 }
 }
 dispatch({picture: state.picture.draw(drawn)});
}

The array of drawn pixels doubles as the function’s work list. For each pixel
reached, we have to see whether any adjacent pixels have the same color and
haven’t already been painted over. The loop counter lags behind the length of
the drawn array as new pixels are added. Any pixels ahead of it still need to be
explored. When it catches up with the length, no unexplored pixels remain,
and the function is done.

The final tool is a color picker, which allows you to point at a color in the
picture to use it as the current drawing color.

function pick(pos, state, dispatch) {
 dispatch({color: state.picture.pixel(pos.x, pos.y)});
}

We can now test our application!

<div></div>
<script>
 let state = {

 tool: "draw",
 color: "#000000",
 picture: Picture.empty(60, 30, "#f0f0f0")
 };

 let app = new PixelEditor(state, {
 tools: {draw, fill, rectangle, pick},
 controls: [ToolSelect, ColorSelect],

 dispatch(action) {
 state = updateState(state, action);
 app.syncState(state);

 }
 });
 document.querySelector("div").appendChild(app.dom);
</script>

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 14/26

Saving and loading

When we’ve drawn our masterpiece, we’ll want to save it for later. We should
add a button for downloading the current picture as an image file. This
control provides that button:

class SaveButton {

 constructor(state) {
 this.picture = state.picture;
 this.dom = elt("button", {

 onclick: () => this.save()
 }, "💾 Save");
 }
 save() {

 let canvas = elt("canvas");
 drawPicture(this.picture, canvas, 1);
 let link = elt("a", {

 href: canvas.toDataURL(),
 download: "pixelart.png"
 });

 document.body.appendChild(link);
 link.click();
 link.remove();
 }

 syncState(state) { this.picture = state.picture; }
}

The component keeps track of the current picture so that it can access it when
saving. To create the image file, it uses a <canvas> element on which it draws
the picture (at a scale of one pixel per pixel).

The toDataURL method on a canvas element creates a URL that uses the
data: scheme. Unlike http: and https: URLs, data URLs contain the
whole resource in the URL. They are usually very long, but they allow us to
create working links to arbitrary pictures, right here in the browser.

To actually get the browser to download the picture, we then create a link
element that points at this URL and has a download attribute. Such links,
when clicked, make the browser show a file save dialog. We add that link to

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 15/26

the document, simulate a click on it, and remove it again. You can do a lot
with browser technology, but sometimes the way to do it is rather odd.

And it gets worse. We’ll also want to be able to load existing image files into
our application. To do that, we again define a button component.

class LoadButton {
 constructor(_, {dispatch}) {

 this.dom = elt("button", {
 onclick: () => startLoad(dispatch)
 }, "📁 Load");
 }

 syncState() {}
}

function startLoad(dispatch) {
 let input = elt("input", {
 type: "file",

 onchange: () => finishLoad(input.files[0], dispatch)
 });
 document.body.appendChild(input);
 input.click();

 input.remove();
}

To get access to a file on the user’s computer, we need the user to select the
file through a file input field. But we don’t want the load button to look like a
file input field, so we create the file input when the button is clicked and then
pretend that this file input itself was clicked.

When the user has selected a file, we can use FileReader to get access to its
contents, again as a data URL. That URL can be used to create an
element, but because we can’t get direct access to the pixels in such an image,
we can’t create a Picture object from that.

function finishLoad(file, dispatch) {

 if (file == null) return;
 let reader = new FileReader();
 reader.addEventListener("load", () => {

 let image = elt("img", {
 onload: () => dispatch({

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 16/26

 picture: pictureFromImage(image)
 }),

 src: reader.result
 });
 });
 reader.readAsDataURL(file);

}

To get access to the pixels, we must first draw the picture to a <canvas>
element. The canvas context has a getImageData method that allows a script
to read its pixels. So once the picture is on the canvas, we can access it and
construct a Picture object.

function pictureFromImage(image) {
 let width = Math.min(100, image.width);

 let height = Math.min(100, image.height);
 let canvas = elt("canvas", {width, height});
 let cx = canvas.getContext("2d");

 cx.drawImage(image, 0, 0);
 let pixels = [];
 let {data} = cx.getImageData(0, 0, width, height);

 function hex(n) {
 return n.toString(16).padStart(2, "0");
 }

 for (let i = 0; i < data.length; i += 4) {
 let [r, g, b] = data.slice(i, i + 3);
 pixels.push("#" + hex(r) + hex(g) + hex(b));

 }
 return new Picture(width, height, pixels);
}

We’ll limit the size of images to 100 by 100 pixels, since anything bigger will
look huge on our display and might slow down the interface.

The data property of the object returned by getImageData is an array of
color components. For each pixel in the rectangle specified by the arguments,
it contains four values that represent the red, green, blue, and alpha
components of the pixel’s color, as numbers between 0 and 255. The alpha
part represents opacity—when it is 0, the pixel is fully transparent, and when
it is 255, it is fully opaque. For our purpose, we can ignore it.

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 17/26

The two hexadecimal digits per component, as used in our color notation,
correspond precisely to the 0 to 255 range—two base-16 digits can express 162

= 256 different numbers. The toString method of numbers can be given a
base as an argument, so n.toString(16) will produce a string
representation in base 16. We have to make sure that each number takes up
two digits, so the hex helper function calls padStart to add a leading 0 when
necessary.

We can load and save now! That leaves one more feature before we’re done.

Undo history

Because half the process of editing is making little mistakes and correcting
them, an important feature in a drawing program is an undo history.

To be able to undo changes, we need to store previous versions of the picture.
Since pictures are immutable values, that’s easy. But it does require an
additional field in the application state.

We’ll add a done array to keep previous versions of the picture. Maintaining
this property requires a more complicated state update function that adds
pictures to the array.

We don’t want to store every change, though—just changes that are a certain
amount of time apart. To be able to do that, we’ll need a second property,
doneAt , to track the time at which we last stored a picture in the history.

function historyUpdateState(state, action) {

 if (action.undo == true) {
 if (state.done.length == 0) return state;
 return {

 ...state,
 picture: state.done[0],
 done: state.done.slice(1),
 doneAt: 0

 };
 } else if (action.picture &&
 state.doneAt < Date.now() - 1000) {

 return {
 ...state,

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 18/26

 ...action,
 done: [state.picture, ...state.done],

 doneAt: Date.now()
 };
 } else {
 return {...state, ...action};

 }
}

When the action is an undo action, the function takes the most recent picture
from the history and makes that the current picture. It sets doneAt to zero so
that the next change is guaranteed to store the picture back in the history,
allowing you to revert to it another time if you want.

Otherwise, if the action contains a new picture and the last time we stored
something is more than a second (1000 milliseconds) ago, the done and
doneAt properties are updated to store the previous picture.

The undo button component doesn’t do much. It dispatches undo actions
when clicked and disables itself when there is nothing to undo.

class UndoButton {

 constructor(state, {dispatch}) {
 this.dom = elt("button", {
 onclick: () => dispatch({undo: true}),

 disabled: state.done.length == 0
 }, "⮪ Undo");
 }
 syncState(state) {

 this.dom.disabled = state.done.length == 0;
 }
}

Let’s draw

To set up the application, we need to create a state, a set of tools, a set of
controls, and a dispatch function. We can pass them to the PixelEditor
constructor to create the main component. Since we’ll need to create several
editors in the exercises, we first define some bindings.

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 19/26

const startState = {
 tool: "draw",

 color: "#000000",
 picture: Picture.empty(60, 30, "#f0f0f0"),
 done: [],
 doneAt: 0

};

const baseTools = {draw, fill, rectangle, pick};

const baseControls = [
 ToolSelect, ColorSelect, SaveButton, LoadButton, UndoButton

];

function startPixelEditor({state = startState,
 tools = baseTools,

 controls = baseControls}) {
 let app = new PixelEditor(state, {
 tools,

 controls,
 dispatch(action) {
 state = historyUpdateState(state, action);

 app.syncState(state);
 }
 });
 return app.dom;

}

When destructuring an object or array, you can use = after a binding name to
give the binding a default value, which is used when the property is missing or
holds undefined . The startPixelEditor function makes use of this to
accept an object with a number of optional properties as an argument. If you
don’t provide a tools property, for example, tools will be bound to
baseTools .

This is how we get an actual editor on the screen:

<div></div>
<script>

 document.querySelector("div")
 .appendChild(startPixelEditor({}));
</script>

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 20/26

Go ahead and draw something.

Why is this so hard?

Browser technology is amazing. It provides a powerful set of interface
building blocks, ways to style and manipulate them, and tools to inspect and
debug your applications. The software you write for the browser can be run on
almost every computer and phone on the planet.

At the same time, browser technology is ridiculous. You have to learn a large
number of silly tricks and obscure facts to master it, and the default
programming model it provides is so problematic that most programmers
prefer to cover it in several layers of abstraction rather than deal with it
directly.

While the situation is definitely improving, it mostly does so in the form of
more elements being added to address shortcomings—creating even more
complexity. A feature used by a million websites can’t really be replaced. Even
if it could, it would be hard to decide what it should be replaced with.

Technology never exists in a vacuum—we’re constrained by our tools and the
social, economic, and historical factors that produced them. This can be
annoying, but it is generally more productive to try to build a good
understanding of how the existing technical reality works—and why it is the
way it is—than to rage against it or hold out for another reality.

New abstractions can be helpful. The component model and data flow
convention I used in this chapter is a crude form of that. As mentioned, there
are libraries that try to make user interface programming more pleasant. At
the time of writing, React and Svelte are popular choices, but there’s a whole
cottage industry of such frameworks. If you’re interested in programming web
applications, I recommend investigating a few of them to understand how
they work and what benefits they provide.

Exercises

There is still room for improvement in our program. Let’s add a few more
features as exercises.

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 21/26

https://reactjs.org/
https://svelte.dev/

Keyboard bindings

Add keyboard shortcuts to the application. The first letter of a tool’s name
selects the tool, and ����-Z or �������-Z activates undo.

Do this by modifying the PixelEditor component. Add a tabIndex property
of 0 to the wrapping <div> element so that it can receive keyboard focus.
Note that the property corresponding to the tabindex attribute is called
tabIndex , with a capital I, and our elt function expects property names.
Register the key event handlers directly on that element. This means you have
to click, touch, or tab to the application before you can interact with it with
the keyboard.

Remember that keyboard events have ctrlKey and metaKey (for the
������� key on Mac) properties that you can use to see whether those keys
are held down.

<div></div>
<script>

 // The original PixelEditor class. Extend the constructor.
 class PixelEditor {
 constructor(state, config) {
 let {tools, controls, dispatch} = config;

 this.state = state;

 this.canvas = new PictureCanvas(state.picture, pos => {

 let tool = tools[this.state.tool];
 let onMove = tool(pos, this.state, dispatch);
 if (onMove) {

 return pos => onMove(pos, this.state, dispatch);
 }
 });
 this.controls = controls.map(

 Control => new Control(state, config));
 this.dom = elt("div", {}, this.canvas.dom, elt("br"),
 ...this.controls.reduce(

 (a, c) => a.concat(" ", c.dom), []));
 }
 syncState(state) {

 this.state = state;
 this.canvas.syncState(state.picture);

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 22/26

 for (let ctrl of this.controls) ctrl.syncState(state);
 }

 }

 document.querySelector("div")
 .appendChild(startPixelEditor({}));

</script>

Display hints...

Efficient drawing

During drawing, the majority of work that our application does happens in
drawPicture . Creating a new state and updating the rest of the DOM isn’t
very expensive, but repainting all the pixels on the canvas is quite a bit of
work.

Find a way to make the syncState method of PictureCanvas faster by
redrawing only the pixels that actually changed.

Remember that drawPicture is also used by the save button, so if you change
it, either make sure the changes don’t break the old use or create a new
version with a different name.

Also note that changing the size of a <canvas> element, by setting its width
or height properties, clears it, making it entirely transparent again.

<div></div>
<script>

 // Change this method
 PictureCanvas.prototype.syncState = function(picture) {
 if (this.picture == picture) return;

 this.picture = picture;
 drawPicture(this.picture, this.dom, scale);
 };

 // You may want to use or change this as well
 function drawPicture(picture, canvas, scale) {
 canvas.width = picture.width * scale;

 canvas.height = picture.height * scale;
 let cx = canvas.getContext("2d");

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 23/26

 for (let y = 0; y < picture.height; y++) {
 for (let x = 0; x < picture.width; x++) {

 cx.fillStyle = picture.pixel(x, y);
 cx.fillRect(x * scale, y * scale, scale, scale);
 }
 }

 }

 document.querySelector("div")

 .appendChild(startPixelEditor({}));
</script>

Display hints...

Circles

Define a tool called circle that draws a filled circle when you drag. The
center of the circle lies at the point where the drag or touch gesture starts, and
its radius is determined by the distance dragged.

<div></div>

<script>
 function circle(pos, state, dispatch) {
 // Your code here
 }

 let dom = startPixelEditor({
 tools: {...baseTools, circle}

 });
 document.querySelector("div").appendChild(dom);
</script>

Display hints...

Proper lines

This is a more advanced exercise than the preceding two, and it will require
you to design a solution to a nontrivial problem. Make sure you have plenty of
time and patience before starting to work on this exercise, and don’t get
discouraged by initial failures.

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 24/26

On most browsers, when you select the draw tool and quickly drag across the
picture, you don’t get a closed line. Rather, you get dots with gaps between
them because the "mousemove" or "touchmove" events did not fire quickly
enough to hit every pixel.

Improve the draw tool to make it draw a full line. This means you have to
make the motion handler function remember the previous position and
connect that to the current one.

To do this, since the pixels can be an arbitrary distance apart, you’ll have to
write a general line drawing function.

A line between two pixels is a connected chain of pixels, as straight as
possible, going from the start to the end. Diagonally adjacent pixels count as
connected. A slanted line should look like the picture on the left, not the
picture on the right.

Finally, if we have code that draws a line between two arbitrary points, we
might as well use it to also define a line tool, which draws a straight line
between the start and end of a drag.

<div></div>
<script>

 // The old draw tool. Rewrite this.
 function draw(pos, state, dispatch) {
 function drawPixel({x, y}, state) {
 let drawn = {x, y, color: state.color};

 dispatch({picture: state.picture.draw([drawn])});
 }
 drawPixel(pos, state);

 return drawPixel;
 }

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 25/26

 function line(pos, state, dispatch) {
 // Your code here

 }

 let dom = startPixelEditor({
 tools: {draw, line, fill, rectangle, pick}

 });
 document.querySelector("div").appendChild(dom);
</script>

Display hints...
◂ ● ▸ ?

27/06/2024, 18:48 Project: A Pixel Art Editor :: Eloquent JavaScript

https://eloquentjavascript.net/19_paint.html 26/26

https://eloquentjavascript.net/18_http.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/20_node.html

