
◂ ● ▸ ?
HTTP and Forms

The Hypertext Transfer Protocol, introduced in Chapter 13, is the mechanism
through which data is requested and provided on the World Wide Web. This
chapter describes the protocol in more detail and explains the way browser
JavaScript has access to it.

The protocol

If you type eloquentjavascript.net/18_http.html in your browser’s address
bar, the browser first looks up the address of the server associated with
eloquentjavascript.net and tries to open a TCP connection to it on port 80,
the default port for HTTP traffic. If the server exists and accepts the
connection, the browser might send something like this:

What was often difficult for people to understand about the design was that there
was nothing else beyond URLs, HTTP and HTML. There was no central computer
‘controlling’ the web, no single network on which these protocols worked, not even
an organisation anywhere that ‘ran’ the Web. The Web was not a physical ‘thing’ that
existed in a certain ‘place’. It was a ‘space’ in which information could exist.”

“

Tim Berners-Lee—

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 1/26

https://eloquentjavascript.net/17_canvas.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/19_paint.html
https://eloquentjavascript.net/13_browser.html#web

GET /18_http.html HTTP/1.1
Host: eloquentjavascript.net

User-Agent: Your browser's name

Then the server responds, through that same connection.

HTTP/1.1 200 OK
Content-Length: 87320
Content-Type: text/html

Last-Modified: Fri, 13 Oct 2023 10:05:41 GMT

<!doctype html>

... the rest of the document

The browser takes the part of the response after the blank line, its body (not
to be confused with the HTML <body> tag), and displays it as an HTML
document.

The information sent by the client is called the request. It starts with this line:

GET /18_http.html HTTP/1.1

The first word is the method of the request. GET means that we want to get
the specified resource. Other common methods are DELETE to delete a
resource, PUT to create or replace it, and POST to send information to it. Note
that the server is not obliged to carry out every request it gets. If you walk up
to a random website and tell it to DELETE its main page, it’ll probably refuse.

The part after the method name is the path of the resource the request applies
to. In the simplest case, a resource is simply a file on the server, but the
protocol doesn’t require it to be. A resource may be anything that can be
transferred as if it is a file. Many servers generate the responses they produce
on the fly. For example, if you open https://github.com/marijnh, the server
looks in its database for a user named “marijnh”, and if it finds one, it will
generate a profile page for that user.

After the resource path, the first line of the request mentions HTTP/1.1 to
indicate the version of the HTTP protocol it is using.

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 2/26

https://github.com/marijnh

In practice, many sites use HTTP version 2, which supports the same concepts
as version 1.1 but is a lot more complicated so that it can be faster. Browsers
will automatically switch to the appropriate protocol version when talking to a
given server, and the outcome of a request is the same regardless of which
version is used. Because version 1.1 is more straightforward and easier to play
around with, we’ll use that to illustrate the protocol.

The server’s response will start with a version as well, followed by the status
of the response, first as a three-digit status code and then as a human-
readable string.

HTTP/1.1 200 OK

Status codes starting with a 2 indicate that the request succeeded. Codes
starting with 4 mean there was something wrong with the request. The most
famous HTTP status code is probably 404, which means that the resource
could not be found. Codes that start with 5 mean an error happened on the
server and the request is not to blame.

The first line of a request or response may be followed by any number of
headers. These are lines in the form name: value that specify extra
information about the request or response. These headers were part of the
example response:

Content-Length: 87320

Content-Type: text/html
Last-Modified: Fri, 13 Oct 2023 10:05:41 GMT

This tells us the size and type of the response document. In this case, it is an
HTML document of 87,320 bytes. It also tells us when that document was last
modified.

The client and server are free to decide what headers to include in their
requests or responses. But some of them are necessary for things to work. For
example, without a Content-Type header in the response, the browser won’t
know how to display the document.

After the headers, both requests and responses may include a blank line
followed by a body, which contains the actual document being sent. GET and

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 3/26

DELETE requests don’t send along any data, but PUT and POST requests do.
Some response types, such as error responses, also don’t require a body.

Browsers and HTTP

As we saw, a browser will make a request when we enter a URL in its address
bar. When the resulting HTML page references other files, such as images and
JavaScript files, it will retrieve those as well.

A moderately complicated website can easily include anywhere from 10 to
200 resources. To be able to fetch those quickly, browsers will make several
GET requests simultaneously, rather than waiting for the responses one at a
time.

HTML pages may include forms, which allow the user to fill out information
and send it to the server. This is an example of a form:

<form method="GET" action="example/message.html">

 <p>Name: <input type="text" name="name"></p>
 <p>Message:
<textarea name="message"></textarea></p>
 <p><button type="submit">Send</button></p>

</form>

This code describes a form with two fields: a small one asking for a name and
a larger one to write a message in. When you click the Send button, the form
is submitted, meaning that the content of its field is packed into an HTTP
request and the browser navigates to the result of that request.

When the <form> element’s method attribute is GET (or is omitted), the
information in the form is added to the end of the action URL as a query
string. The browser might make a request to this URL:

GET /example/message.html?name=Jean&message=Yes%3F HTTP/1.1

The question mark indicates the end of the path part of the URL and the start
of the query. It is followed by pairs of names and values, corresponding to the
name attribute on the form field elements and the content of those elements,
respectively. An ampersand character (&) is used to separate the pairs.

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 4/26

The actual message encoded in the URL is “Yes?”, but the question mark is
replaced by a strange code. Some characters in query strings must be escaped.
The question mark, represented as %3F , is one of those. There seems to be an
unwritten rule that every format needs its own way of escaping characters.
This one, called URL encoding, uses a percent sign followed by two
hexadecimal (base 16) digits that encode the character code. In this case, 3F,
which is 63 in decimal notation, is the code of a question mark character.
JavaScript provides the encodeURIComponent and decodeURIComponent
functions to encode and decode this format.

console.log(encodeURIComponent("Yes?"));
// → Yes%3F
console.log(decodeURIComponent("Yes%3F"));
// → Yes?

If we change the method attribute of the HTML form in the example we saw
earlier to POST , the HTTP request made to submit the form will use the POST
method and put the query string in the body of the request, rather than
adding it to the URL.

POST /example/message.html HTTP/1.1
Content-length: 24

Content-type: application/x-www-form-urlencoded

name=Jean&message=Yes%3F

GET requests should be used for requests that do not have side effects but
simply ask for information. Requests that change something on the server, for
example creating a new account or posting a message, should be expressed
with other methods, such as POST . Client-side software such as a browser
knows that it shouldn’t blindly make POST requests but will often implicitly
make GET requests—to prefetch a resource it believes the user will soon need,
for example.

We’ll come back to forms and how to interact with them from JavaScript later
in the chapter.

Fetch

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 5/26

The interface through which browser JavaScript can make HTTP requests is
called fetch .

fetch("example/data.txt").then(response => {
 console.log(response.status);

 // → 200
 console.log(response.headers.get("Content-Type"));
 // → text/plain
});

Calling fetch returns a promise that resolves to a Response object holding
information about the server’s response, such as its status code and its
headers. The headers are wrapped in a Map-like object that treats its keys (the
header names) as case-insensitive because header names are not supposed to
be case-sensitive. This means headers.get("Content-Type") and
headers.get("content-TYPE") will return the same value.

Note that the promise returned by fetch resolves successfully even if the
server responded with an error code. It can also be rejected if there is a
network error or if the server to which that the request is addressed can’t be
found.

The first argument to fetch is the URL that should be requested. When that
URL doesn’t start with a protocol name (such as http:), it is treated as
relative, which means it is interpreted relative to the current document.
When it starts with a slash (/), it replaces the current path, which is the part
after the server name. When it does not, the part of the current path up to and
including its last slash character is put in front of the relative URL.

To get at the actual content of a response, you can use its text method.
Because the initial promise is resolved as soon as the response’s headers have
been received and because reading the response body might take a while
longer, this again returns a promise.

fetch("example/data.txt")
 .then(resp => resp.text())
 .then(text => console.log(text));

// → This is the content of data.txt

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 6/26

A similar method, called json , returns a promise that resolves to the value
you get when parsing the body as JSON or rejects if it’s not valid JSON.

By default, fetch uses the GET method to make its request and does not
include a request body. You can configure it differently by passing an object
with extra options as a second argument. For example, this request tries to
delete example/data.txt :

fetch("example/data.txt", {method: "DELETE"}).then(resp => {
 console.log(resp.status);

 // → 405
});

The 405 status code means “method not allowed”, an HTTP server’s way of
saying “I’m afraid I can’t do that”.

To add a request body for a PUT or POST request, you can include a body
option. To set headers, there’s the headers option. For example, this request
includes a Range header, which instructs the server to return only part of a
document.

fetch("example/data.txt", {headers: {Range: "bytes=8-19"}})
 .then(resp => resp.text())

 .then(console.log);
// → the content

The browser will automatically add some request headers, such as “Host” and
those needed for the server to figure out the size of the body. But adding your
own headers is often useful to include things such as authentication
information or to tell the server which file format you’d like to receive.

HTTP sandboxing

Making HTTP requests in web page scripts once again raises concerns about
security. The person who controls the script might not have the same interests
as the person on whose computer it is running. More specifically, if I visit
themafia.org, I do not want its scripts to be able to make a request to
mybank.com, using identifying information from my browser, with
instructions to transfer away all my money.

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 7/26

For this reason, browsers protect us by disallowing scripts to make HTTP
requests to other domains (names such as themafia.org and mybank.com).

This can be an annoying problem when building systems that want to access
several domains for legitimate reasons. Fortunately, servers can include a
header like this in their response to explicitly indicate to the browser that it is
okay for the request to come from another domain:

Access-Control-Allow-Origin: *

Appreciating HTTP

When building a system that requires communication between a JavaScript
program running in the browser (client-side) and a program on a server
(server-side), there are several different ways to model this communication.

A commonly used model is that of remote procedure calls. In this model,
communication follows the patterns of normal function calls, except that the
function is actually running on another machine. Calling it involves making a
request to the server that includes the function’s name and arguments. The
response to that request contains the returned value.

When thinking in terms of remote procedure calls, HTTP is just a vehicle for
communication, and you will most likely write an abstraction layer that hides
it entirely.

Another approach is to build your communication around the concept of
resources and HTTP methods. Instead of a remote procedure called addUser ,
you use a PUT request to /users/larry . Instead of encoding that user’s
properties in function arguments, you define a JSON document format (or
use an existing format) that represents a user. The body of the PUT request to
create a new resource is then such a document. A resource is fetched by
making a GET request to the resource’s URL (for example, /users/larry),
which again returns the document representing the resource.

This second approach makes it easier to use some of the features that HTTP
provides, such as support for caching resources (keeping a copy of a resource
on the client for fast access). The concepts used in HTTP, which are well-

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 8/26

designed, can provide a helpful set of principles to design your server
interface around.

Security and HTTPS

Data traveling over the internet tends to follow a long, dangerous road. To get
to its destination, it must hop through anything from coffee shop Wi-Fi
hotspots to networks controlled by various companies and states. At any point
along its route, it may be inspected or even modified.

If it is important that something remain secret, such as the password to your
email account, or that it arrive at its destination unmodified, such as the
account number you transfer money to via your bank’s website, plain HTTP is
not good enough.

The secure HTTP protocol, used for URLs starting with https://, wraps HTTP
traffic in a way that makes it harder to read and tamper with. Before
exchanging data, the client verifies that the server is who it claims to be by
asking it to prove that it has a cryptographic certificate issued by a certificate
authority that the browser recognizes. Next, all data going over the connection
is encrypted in a way that should prevent eavesdropping and tampering.

Thus, when it works right, HTTPS prevents other people from impersonating
the website you are trying to talk to and from snooping on your
communication. It’s not perfect, and there have been various incidents where
HTTPS failed because of forged or stolen certificates and broken software, but
it is a lot safer than plain HTTP.

Form fields

Forms were originally designed for the pre-JavaScript web to allow websites
to send user-submitted information in an HTTP request. This design assumes
that interaction with the server always happens by navigating to a new page.

However, the form elements are part of the DOM, like the rest of the page,
and the DOM elements that represent form fields support a number of
properties and events that are not present on other elements. These make it
possible to inspect and control such input fields with JavaScript programs

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 9/26

and do things such as adding new functionality to a form or using forms and
fields as building blocks in a JavaScript application.

A web form consists of any number of input fields grouped in a <form> tag.
HTML allows several different styles of fields, ranging from simple on/off
checkboxes to drop-down menus and fields for text input. This book won’t try
to comprehensively discuss all field types, but we’ll start with a rough
overview.

A lot of field types use the <input> tag. This tag’s type attribute is used to
select the field’s style. These are some commonly used <input> types:

text A single-line text field

password Same as text but hides the text that is typed

checkbox An on/off switch

color A color

date A calendar date

radio (Part of) a multiple-choice field

file Allows the user to choose a file from their computer

Form fields do not necessarily have to appear in a <form> tag. You can put
them anywhere in a page. Such form-less fields cannot be submitted (only a
form as a whole can), but when responding to input with JavaScript, we often
don’t want to submit our fields normally anyway.

<p><input type="text" value="abc"> (text)</p>
<p><input type="password" value="abc"> (password)</p>

<p><input type="checkbox" checked> (checkbox)</p>
<p><input type="color" value="orange"> (color)</p>
<p><input type="date" value="2023-10-13"> (date)</p>
<p><input type="radio" value="A" name="choice">

 <input type="radio" value="B" name="choice" checked>
 <input type="radio" value="C" name="choice"> (radio)</p>
<p><input type="file"> (file)</p>

The JavaScript interface for such elements differs with the type of the
element.

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 10/26

Multiline text fields have their own tag, <textarea> , mostly because using an
attribute to specify a multiline starting value would be awkward. The
<textarea> tag requires a matching </textarea> closing tag and uses the
text between those two, instead of the value attribute, as starting text.

<textarea>
one

two
three
</textarea>

Finally, the <select> tag is used to create a field that allows the user to select
from a number of predefined options.

<select>

 <option>Pancakes</option>
 <option>Pudding</option>
 <option>Ice cream</option>

</select>

Whenever the value of a form field changes, it will fire a "change" event.

Focus

Unlike most elements in HTML documents, form fields can get keyboard
focus. When clicked, moved to with the ��� key, or activated in some other
way, they become the currently active element and the recipient of keyboard
input.

Thus, you can type into a text field only when it is focused. Other fields
respond differently to keyboard events. For example, a <select> menu tries
to move to the option that contains the text the user typed and responds to
the arrow keys by moving its selection up and down.

We can control focus from JavaScript with the focus and blur methods. The
first moves focus to the DOM element it is called on, and the second removes
focus. The value in document.activeElement corresponds to the currently
focused element.

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 11/26

<input type="text">
<script>

 document.querySelector("input").focus();
 console.log(document.activeElement.tagName);
 // → INPUT
 document.querySelector("input").blur();

 console.log(document.activeElement.tagName);
 // → BODY
</script>

For some pages, the user is expected to want to interact with a form field
immediately. JavaScript can be used to focus this field when the document is
loaded, but HTML also provides the autofocus attribute, which produces the
same effect while letting the browser know what we are trying to achieve. This
gives the browser the option to disable the behavior when it is not
appropriate, such as when the user has put the focus on something else.

Browsers allow the user to move the focus through the document by pressing
the ��� key to move to the next focusable element, and �����-��� to move
back to the previous element. By default, elements are visited in the order in
which they appear in the document. It is possible to use the tabindex
attribute to change this order. The following example document will let the
focus jump from the text input to the OK button, rather than going through
the help link first:

<input type="text" tabindex=1> (help)
<button onclick="console.log('ok')" tabindex=2>OK</button>

By default, most types of HTML elements cannot be focused. You can add a
tabindex attribute to any element to make it focusable. A tabindex of 0
makes an element focusable without affecting the focus order.

Disabled fields

All form fields can be disabled through their disabled attribute. It is an
attribute that can be specified without value—the fact that it is present at all
disables the element.

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 12/26

<button>I'm all right</button>
<button disabled>I'm out</button>

Disabled fields cannot be focused or changed, and browsers make them look
gray and faded.

When a program is in the process of handling an action caused by some
button or other control that might require communication with the server and
thus take a while, it can be a good idea to disable the control until the action
finishes. That way, when the user gets impatient and clicks it again, they don’t
accidentally repeat their action.

The form as a whole

When a field is contained in a <form> element, its DOM element will have a
form property linking back to the form’s DOM element. The <form> element,
in turn, has a property called elements that contains an array-like collection
of the fields inside it.

The name attribute of a form field determines the way its value will be
identified when the form is submitted. It can also be used as a property name
when accessing the form’s elements property, which acts both as an array-
like object (accessible by number) and a map (accessible by name).

<form action="example/submit.html">
 Name: <input type="text" name="name">

 Password: <input type="password" name="password">

 <button type="submit">Log in</button>
</form>
<script>

 let form = document.querySelector("form");
 console.log(form.elements[1].type);
 // → password
 console.log(form.elements.password.type);
 // → password
 console.log(form.elements.name.form == form);

 // → true
</script>

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 13/26

A button with a type attribute of submit will, when pressed, cause the form
to be submitted. Pressing ����� when a form field is focused has the same
effect.

Submitting a form normally means that the browser navigates to the page
indicated by the form’s action attribute, using either a GET or a POST
request. But before that happens, a "submit" event is fired. You can handle
this event with JavaScript and prevent this default behavior by calling
preventDefault on the event object.

<form>
 Value: <input type="text" name="value">

 <button type="submit">Save</button>
</form>
<script>
 let form = document.querySelector("form");

 form.addEventListener("submit", event => {
 console.log("Saving value", form.elements.value.value);
 event.preventDefault();

 });
</script>

Intercepting "submit" events in JavaScript has various uses. We can write
code to verify that the values the user entered make sense and immediately
show an error message instead of submitting the form. Or we can disable the
regular way of submitting the form entirely, as in the example, and have our
program handle the input, possibly using fetch to send it to a server without
reloading the page.

Text fields

Fields created by <textarea> tags, or <input> tags with a type of text or
password , share a common interface. Their DOM elements have a value
property that holds their current content as a string value. Setting this
property to another string changes the field’s content.

The selectionStart and selectionEnd properties of text fields give us
information about the cursor and selection in the text. When nothing is
selected, these two properties hold the same number, indicating the position

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 14/26

of the cursor. For example, 0 indicates the start of the text, and 10 indicates
the cursor is after the 10th character. When part of the field is selected, the two
properties will differ, giving us the start and end of the selected text. Like
value , these properties may also be written to.

Imagine you are writing an article about Khasekhemwy, last pharaoh of the
Second Dynasty, but have some trouble spelling his name. The following code
wires up a <textarea> tag with an event handler that, when you press F2,
inserts the string “Khasekhemwy” for you.

<textarea></textarea>
<script>

 let textarea = document.querySelector("textarea");
 textarea.addEventListener("keydown", event => {
 if (event.key == "F2") {
 replaceSelection(textarea, "Khasekhemwy");

 event.preventDefault();
 }
 });

 function replaceSelection(field, word) {
 let from = field.selectionStart, to = field.selectionEnd;
 field.value = field.value.slice(0, from) + word +

 field.value.slice(to);
 // Put the cursor after the word
 field.selectionStart = from + word.length;
 field.selectionEnd = from + word.length;

 }
</script>

The replaceSelection function replaces the currently selected part of a text
field’s content with the given word and then moves the cursor after that word
so that the user can continue typing.

The "change" event for a text field does not fire every time something is
typed. Rather, it fires when the field loses focus after its content was changed.
To respond immediately to changes in a text field, you should register a
handler for the "input" event instead, which fires every time the user types a
character, deletes text, or otherwise manipulates the field’s content.

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 15/26

The following example shows a text field and a counter displaying the current
length of the text in the field:

<input type="text"> length: 0
<script>

 let text = document.querySelector("input");
 let output = document.querySelector("#length");
 text.addEventListener("input", () => {
 output.textContent = text.value.length;

 });
</script>

Checkboxes and radio buttons

A checkbox field is a binary toggle. Its value can be extracted or changed
through its checked property, which holds a Boolean value.

<label>
 <input type="checkbox" id="purple"> Make this page purple
</label>

<script>
 let checkbox = document.querySelector("#purple");
 checkbox.addEventListener("change", () => {

 document.body.style.background =
 checkbox.checked ? "mediumpurple" : "";
 });
</script>

The <label> tag associates a piece of document with an input field. Clicking
anywhere on the label will activate the field, which focuses it and toggles its
value when it is a checkbox or radio button.

A radio button is similar to a checkbox, but it’s implicitly linked to other radio
buttons with the same name attribute so that only one of them can be active at
any time.

Color:
<label>
 <input type="radio" name="color" value="orange"> Orange

</label>
<label>

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 16/26

 <input type="radio" name="color" value="lightgreen"> Green
</label>

<label>
 <input type="radio" name="color" value="lightblue"> Blue
</label>
<script>

 let buttons = document.querySelectorAll("[name=color]");
 for (let button of Array.from(buttons)) {
 button.addEventListener("change", () => {

 document.body.style.background = button.value;
 });
 }

</script>

The square brackets in the CSS query given to querySelectorAll are used to
match attributes. It selects elements whose name attribute is "color" .

Select fields

Select fields are conceptually similar to radio buttons—they also allow the
user to choose from a set of options. But where a radio button puts the layout
of the options under our control, the appearance of a <select> tag is
determined by the browser.

Select fields also have a variant more akin to a list of checkboxes rather than
radio boxes. When given the multiple attribute, a <select> tag will allow
the user to select any number of options, rather than just a single option.
Whereas a regular select field is drawn as a drop-down control, which shows
the inactive options only when you open it, a field with multiple enabled
shows multiple options at the same time, allowing the user to enable or
disable them individually.

Each <option> tag has a value. This value can be defined with a value
attribute. When that is not given, the text inside the option will count as its
value. The value property of a <select> element reflects the currently
selected option. For a multiple field, though, this property doesn’t mean
much since it will give the value of only one of the currently selected options.

The <option> tags for a <select> field can be accessed as an array-like
object through the field’s options property. Each option has a property

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 17/26

called selected , which indicates whether that option is currently selected.
The property can also be written to select or deselect an option.

This example extracts the selected values from a multiple select field and
uses them to compose a binary number from individual bits. Hold ���� (or
������� on a Mac) to select multiple options.

<select multiple>
 <option value="1">0001</option>

 <option value="2">0010</option>
 <option value="4">0100</option>
 <option value="8">1000</option>
</select> = 0

<script>
 let select = document.querySelector("select");
 let output = document.querySelector("#output");

 select.addEventListener("change", () => {
 let number = 0;
 for (let option of Array.from(select.options)) {

 if (option.selected) {
 number += Number(option.value);
 }
 }

 output.textContent = number;
 });
</script>

File fields

File fields were originally designed as a way to upload files from the user’s
machine through a form. In modern browsers, they also provide a way to read
such files from JavaScript programs. The field acts as a kind of gatekeeper.
The script cannot simply start reading private files from the user’s computer,
but if the user selects a file in such a field, the browser interprets that action
to mean that the script may read the file.

A file field usually looks like a button labeled with something like “choose file”
or “browse”, with information about the chosen file next to it.

<input type="file">
<script>

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 18/26

 let input = document.querySelector("input");
 input.addEventListener("change", () => {

 if (input.files.length > 0) {
 let file = input.files[0];
 console.log("You chose", file.name);
 if (file.type) console.log("It has type", file.type);

 }
 });
</script>

The files property of a file field element is an array-like object (once again,
not a real array) containing the files chosen in the field. It is initially empty.
The reason there isn’t simply a file property is that file fields also support a
multiple attribute, which makes it possible to select multiple files at the
same time.

The objects in files have properties such as name (the filename), size (the
file’s size in bytes, which are chunks of 8 bits), and type (the media type of
the file, such as text/plain or image/jpeg).

What it does not have is a property that contains the content of the file.
Getting at that is a little more involved. Since reading a file from disk can take
time, the interface is asynchronous to avoid freezing the window.

<input type="file" multiple>
<script>
 let input = document.querySelector("input");

 input.addEventListener("change", () => {
 for (let file of Array.from(input.files)) {
 let reader = new FileReader();
 reader.addEventListener("load", () => {

 console.log("File", file.name, "starts with",
 reader.result.slice(0, 20));
 });

 reader.readAsText(file);
 }
 });

</script>

Reading a file is done by creating a FileReader object, registering a "load"
event handler for it, and calling its readAsText method, giving it the file we

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 19/26

want to read. Once loading finishes, the reader’s result property contains
the file’s content.

FileReaders also fire an "error" event when reading the file fails for any
reason. The error object itself will end up in the reader’s error property. This
interface was designed before promises became part of the language. You
could wrap it in a promise like this:

function readFileText(file) {
 return new Promise((resolve, reject) => {

 let reader = new FileReader();
 reader.addEventListener(
 "load", () => resolve(reader.result));
 reader.addEventListener(

 "error", () => reject(reader.error));
 reader.readAsText(file);
 });

}

Storing data client-side

Simple HTML pages with a bit of JavaScript can be a great format for “mini
applications”—small helper programs that automate basic tasks. By
connecting a few form fields with event handlers, you can do anything from
converting between centimeters and inches to computing passwords from a
master password and a website name.

When such an application needs to remember something between sessions,
you cannot use JavaScript bindings—those are thrown away every time the
page is closed. You could set up a server, connect it to the internet, and have
your application store something there (we’ll see how to do that in Chapter
20). But that’s a lot of extra work and complexity. Sometimes it’s enough to
just keep the data in the browser.

The localStorage object can be used to store data in a way that survives
page reloads. This object allows you to file string values under names.

localStorage.setItem("username", "marijn");

console.log(localStorage.getItem("username"));

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 20/26

https://eloquentjavascript.net/20_node.html
https://eloquentjavascript.net/20_node.html

// → marijn
localStorage.removeItem("username");

A value in localStorage sticks around until it is overwritten or is removed
with removeItem , or the user clears their local data.

Sites from different domains get different storage compartments. That means
data stored in localStorage by a given website can, in principle, be read
(and overwritten) only by scripts on that same site.

Browsers do enforce a limit on the size of the data a site can store in
localStorage . That restriction, along with the fact that filling up people’s
hard drives with junk is not really profitable, prevents the feature from eating
up too much space.

The following code implements a crude note-taking application. It keeps a set
of named notes and allows the user to edit notes and create new ones.

Notes: <select></select> <button>Add</button>

<textarea style="width: 100%"></textarea>

<script>

 let list = document.querySelector("select");
 let note = document.querySelector("textarea");

 let state;
 function setState(newState) {
 list.textContent = "";

 for (let name of Object.keys(newState.notes)) {
 let option = document.createElement("option");
 option.textContent = name;
 if (newState.selected == name) option.selected = true;

 list.appendChild(option);
 }
 note.value = newState.notes[newState.selected];

 localStorage.setItem("Notes", JSON.stringify(newState));
 state = newState;

 }
 setState(JSON.parse(localStorage.getItem("Notes")) ?? {
 notes: {"shopping list": "Carrots\nRaisins"},
 selected: "shopping list"

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 21/26

 });

 list.addEventListener("change", () => {
 setState({notes: state.notes, selected: list.value});
 });
 note.addEventListener("change", () => {

 let {selected} = state;
 setState({
 notes: {...state.notes, [selected]: note.value},

 selected
 });
 });

 document.querySelector("button")
 .addEventListener("click", () => {
 let name = prompt("Note name");
 if (name) setState({

 notes: {...state.notes, [name]: ""},
 selected: name
 });

 });
</script>

The script gets its starting state from the "Notes" value stored in
localStorage or, if that’s missing, creates an example state that has only a
shopping list in it. Reading a field that does not exist from localStorage will
yield null . Passing null to JSON.parse will make it parse the string "null"
and return null . Thus, the ?? operator can be used to provide a default value
in a situation like this.

The setState method makes sure the DOM is showing a given state and
stores the new state to localStorage . Event handlers call this function to
move to a new state.

The ... syntax in the example is used to create a new object that is a clone of
the old state.notes , but with one property added or overwritten. It uses
spread syntax to first add the properties from the old object and then set a
new property. The square brackets notation in the object literal is used to
create a property whose name is based on some dynamic value.

There is another object, similar to localStorage , called sessionStorage .
The difference between the two is that the content of sessionStorage is

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 22/26

forgotten at the end of each session, which for most browsers means
whenever the browser is closed.

Summary

In this chapter, we discussed how the HTTP protocol works. A client sends a
request, which contains a method (usually GET) and a path that identifies a
resource. The server then decides what to do with the request and responds
with a status code and a response body. Both requests and responses may
contain headers that provide additional information.

The interface through which browser JavaScript can make HTTP requests is
called fetch . Making a request looks like this:

fetch("/18_http.html").then(r => r.text()).then(text => {

 console.log(`The page starts with ${text.slice(0, 15)}`);
});

Browsers make GET requests to fetch the resources needed to display a web
page. A page may also contain forms, which allow information entered by the
user to be sent as a request for a new page when the form is submitted.

HTML can represent various types of form fields, such as text fields,
checkboxes, multiple-choice fields, and file pickers. Such fields can be
inspected and manipulated with JavaScript. They fire the "change" event
when changed, fire the "input" event when text is typed, and receive
keyboard events when they have keyboard focus. Properties like value (for
text and select fields) or checked (for checkboxes and radio buttons) are used
to read or set the field’s content.

When a form is submitted, a "submit" event is fired on it. A JavaScript
handler can call preventDefault on that event to disable the browser’s
default behavior. Form field elements may also occur outside of a form tag.

When the user has selected a file from their local file system in a file picker
field, the FileReader interface can be used to access the content of this file
from a JavaScript program.

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 23/26

The localStorage and sessionStorage objects can be used to save
information in a way that survives page reloads. The first object saves the data
forever (or until the user decides to clear it), and the second saves it until the
browser is closed.

Exercises

Content negotiation

One of the things HTTP can do is called content negotiation. The Accept
request header is used to tell the server what type of document the client
would like to get. Many servers ignore this header, but when a server knows of
various ways to encode a resource, it can look at this header and send the one
that the client prefers.

The URL https://eloquentjavascript.net/author is configured to respond
with either plaintext, HTML, or JSON, depending on what the client asks for.
These formats are identified by the standardized media types text/plain ,
text/html , and application/json .

Send requests to fetch all three formats of this resource. Use the headers
property in the options object passed to fetch to set the header named
Accept to the desired media type.

Finally, try asking for the media type application/rainbows+unicorns and
see which status code that produces.

// Your code here.

Display hints...

A JavaScript workbench

Build an interface that allows people to type and run pieces of JavaScript
code.

Put a button next to a <textarea> field that, when pressed, uses the
Function constructor we saw in Chapter 10 to wrap the text in a function and
call it. Convert the return value of the function, or any error it raises, to a
string and display it below the text field.

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 24/26

https://eloquentjavascript.net/author
https://eloquentjavascript.net/10_modules.html#eval

<textarea id="code">return "hi";</textarea>
<button id="button">Run</button>

<pre id="output"></pre>

<script>
 // Your code here.

</script>

Display hints...

Conway ’s Game of Life

Conway’s Game of Life is a simple simulation that creates artificial “life” on a
grid, each cell of which is either alive or not. In each generation (turn), the
following rules are applied:

Any live cell with fewer than two or more than three live neighbors dies.

Any live cell with two or three live neighbors lives on to the next
generation.

Any dead cell with exactly three live neighbors becomes a live cell.

A neighbor is defined as any adjacent cell, including diagonally adjacent ones.

Note that these rules are applied to the whole grid at once, not one square at a
time. That means the counting of neighbors is based on the situation at the
start of the generation, and changes happening to neighbor cells during this
generation should not influence the new state of a given cell.

Implement this game using whichever data structure you find appropriate.
Use Math.random to populate the grid with a random pattern initially.
Display it as a grid of checkbox fields, with a button next to it to advance to
the next generation. When the user checks or unchecks the checkboxes, their
changes should be included when computing the next generation.

<div id="grid"></div>
<button id="next">Next generation</button>

<script>

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 25/26

 // Your code here.
</script>

Display hints...
◂ ● ▸ ?

27/06/2024, 18:48 HTTP and Forms :: Eloquent JavaScript

https://eloquentjavascript.net/18_http.html 26/26

https://eloquentjavascript.net/17_canvas.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/19_paint.html

