
◂ ● ▸ ?
Drawing on Canvas

Browsers give us several ways to display graphics. The simplest way is to use
styles to position and color regular DOM elements. This can get us quite far,
as the game in the previous chapter showed. By adding partially transparent
background images to the nodes, we can make them look exactly the way we
want. It is even possible to rotate or skew nodes with the transform style.

But we’d be using the DOM for something that it wasn’t originally designed
for. Some tasks, such as drawing a line between arbitrary points, are
extremely awkward to do with regular HTML elements.

There are two alternatives. The first is DOM-based but utilizes Scalable
Vector Graphics (SVG), rather than HTML. Think of SVG as a document-
markup dialect that focuses on shapes rather than text. You can embed an
SVG document directly in an HTML document or include it with an
tag.

Drawing is deception.”“

M.C. Escher, cited by Bruno Ernst in The Magic Mirror of M.C. Escher—

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 1/26

https://eloquentjavascript.net/16_game.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/18_http.html
https://eloquentjavascript.net/16_game.html

The second alternative is called a canvas. A canvas is a single DOM element
that encapsulates a picture. It provides a programming interface for drawing
shapes onto the space taken up by the node. The main difference between a
canvas and an SVG picture is that in SVG the original description of the
shapes is preserved so that they can be moved or resized at any time. A
canvas, on the other hand, converts the shapes to pixels (colored dots on a
raster) as soon as they are drawn and does not remember what these pixels
represent. The only way to move a shape on a canvas is to clear the canvas (or
the part of the canvas around the shape) and redraw it with the shape in a
new position.

SVG

This book won’t go into SVG in detail, but I’ll briefly explain how it works. At
the end of the chapter, I’ll come back to the trade-offs that you must consider
when deciding which drawing mechanism is appropriate for a given
application.

This is an HTML document with a simple SVG picture in it:

<p>Normal HTML here.</p>

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="50" cx="50" cy="50" fill="red"/>
 <rect x="120" y="5" width="90" height="90"

 stroke="blue" fill="none"/>
</svg>

The xmlns attribute changes an element (and its children) to a different XML
namespace. This namespace, identified by a URL, specifies the dialect that we
are currently speaking. The <circle> and <rect> tags, which do not exist in
HTML, do have a meaning in SVG—they draw shapes using the style and
position specified by their attributes.

These tags create DOM elements, just like HTML tags, that scripts can
interact with. For example, this changes the <circle> element to be colored
cyan instead:

let circle = document.querySelector("circle");
circle.setAttribute("fill", "cyan");

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 2/26

The canvas element

Canvas graphics can be drawn onto a <canvas> element. You can give such
an element width and height attributes to determine its size in pixels.

A new canvas is empty, meaning it is entirely transparent and thus shows up
as empty space in the document.

The <canvas> tag is intended to allow different styles of drawing. To get
access to an actual drawing interface, we first need to create a context, an
object whose methods provide the drawing interface. There are currently
three widely supported drawing styles: "2d" for two-dimensional graphics,
"webgl" for three-dimensional graphics through the OpenGL interface, and
"webgpu" , a more modern and flexible alternative to WebGL.

This book won’t discuss WebGL or WebGPU—we’ll stick to two dimensions.
But if you are interested in three-dimensional graphics, I do encourage you to
look into WebGPU. It provides a direct interface to graphics hardware and
allows you to render even complicated scenes efficiently, using JavaScript.

You create a context with the getContext method on the <canvas> DOM
element.

<p>Before canvas.</p>

<canvas width="120" height="60"></canvas>
<p>After canvas.</p>
<script>

 let canvas = document.querySelector("canvas");
 let context = canvas.getContext("2d");
 context.fillStyle = "red";
 context.fillRect(10, 10, 100, 50);

</script>

After creating the context object, the example draws a red rectangle 100 pixels
wide and 50 pixels high, with its top-left corner at coordinates (10,10).

Just like in HTML (and SVG), the coordinate system that the canvas uses puts
(0,0) at the top-left corner, and the positive y-axis goes down from there. This
means (10,10) is 10 pixels below and to the right of the top-left corner.

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 3/26

Lines and surfaces

In the canvas interface, a shape can be filled, meaning its area is given a
certain color or pattern, or it can be stroked, which means a line is drawn
along its edge. SVG uses the same terminology.

The fillRect method fills a rectangle. It takes first the x- and y-coordinates
of the rectangle’s top-left corner, then its width, and then its height. A similar
method called strokeRect draws the outline of a rectangle.

Neither method takes any further parameters. The color of the fill, thickness
of the stroke, and so on, are not determined by an argument to the method, as
you might reasonably expect, but rather by properties of the context object.

The fillStyle property controls the way shapes are filled. It can be set to a
string that specifies a color, using the color notation used by CSS.

The strokeStyle property works similarly but determines the color used for
a stroked line. The width of that line is determined by the lineWidth
property, which may contain any positive number.

<canvas></canvas>

<script>
 let cx = document.querySelector("canvas").getContext("2d");
 cx.strokeStyle = "blue";

 cx.strokeRect(5, 5, 50, 50);
 cx.lineWidth = 5;
 cx.strokeRect(135, 5, 50, 50);
</script>

When no width or height attribute is specified, as in the example, a canvas
element gets a default width of 300 pixels and height of 150 pixels.

Paths

A path is a sequence of lines. The 2D canvas interface takes a peculiar
approach to describing such a path. It is done entirely through side effects.
Paths are not values that can be stored and passed around. Instead, if you
want to do something with a path, you make a sequence of method calls to
describe its shape.

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 4/26

<canvas></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");
 cx.beginPath();
 for (let y = 10; y < 100; y += 10) {
 cx.moveTo(10, y);

 cx.lineTo(90, y);
 }
 cx.stroke();

</script>

This example creates a path with a number of horizontal line segments and
then strokes it using the stroke method. Each segment created with lineTo
starts at the path’s current position. That position is usually the end of the last
segment, unless moveTo was called. In that case, the next segment would start
at the position passed to moveTo .

When filling a path (using the fill method), each shape is filled separately.
A path can contain multiple shapes—each moveTo motion starts a new one.
But the path needs to be closed (meaning its start and end are in the same
position) before it can be filled. If the path is not already closed, a line is
added from its end to its start, and the shape enclosed by the completed path
is filled.

<canvas></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");
 cx.beginPath();
 cx.moveTo(50, 10);
 cx.lineTo(10, 70);

 cx.lineTo(90, 70);
 cx.fill();
</script>

This example draws a filled triangle. Note that only two of the triangle’s sides
are explicitly drawn. The third, from the bottom-right corner back to the top,
is implied and wouldn’t be there if you stroked the path.

You could also use the closePath method to explicitly close a path by adding
an actual line segment back to the path’s start. This segment is drawn when

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 5/26

stroking the path.

Curves

A path may also contain curved lines. These are unfortunately a bit more
involved to draw.

The quadraticCurveTo method draws a curve to a given point. To determine
the curvature of the line, the method is given a control point as well as a
destination point. Imagine this control point as attracting the line, giving it
its curve. The line won’t go through the control point, but its direction at the
start and end points will be such that a straight line in that direction would
point toward the control point. The following example illustrates this:

<canvas></canvas>

<script>
 let cx = document.querySelector("canvas").getContext("2d");
 cx.beginPath();

 cx.moveTo(10, 90);
 // control=(60,10) goal=(90,90)
 cx.quadraticCurveTo(60, 10, 90, 90);
 cx.lineTo(60, 10);

 cx.closePath();
 cx.stroke();
</script>

We draw a quadratic curve from the left to the right, with (60,10) as control
point, and then draw two line segments going through that control point and
back to the start of the line. The result somewhat resembles a Star Trek
insignia. You can see the effect of the control point: the lines leaving the lower
corners start off in the direction of the control point and then curve toward
their target.

The bezierCurveTo method draws a similar kind of curve. Instead of a single
control point, this method has two—one for each of the line’s endpoints. Here
is a similar sketch to illustrate the behavior of such a curve:

<canvas></canvas>
<script>
 let cx = document.querySelector("canvas").getContext("2d");

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 6/26

 cx.beginPath();
 cx.moveTo(10, 90);

 // control1=(10,10) control2=(90,10) goal=(50,90)
 cx.bezierCurveTo(10, 10, 90, 10, 50, 90);
 cx.lineTo(90, 10);
 cx.lineTo(10, 10);

 cx.closePath();
 cx.stroke();
</script>

The two control points specify the direction at both ends of the curve. The
farther they are away from their corresponding point, the more the curve will
“bulge” in that direction.

Such curves can be hard to work with—it’s not always clear how to find the
control points that provide the shape you are looking for. Sometimes you can
compute them, and sometimes you’ll just have to find a suitable value by trial
and error.

The arc method is a way to draw a line that curves along the edge of a circle.
It takes a pair of coordinates for the arc’s center, a radius, and then a start
angle and end angle.

Those last two parameters make it possible to draw only part of the circle. The
angles are measured in radians, not degrees. This means a full circle has an
angle of 2π, or 2 * Math.PI , which is about 6.28. The angle starts counting
at the point to the right of the circle’s center and goes clockwise from there.
You can use a start of 0 and an end bigger than 2π (say, 7) to draw a full circle.

<canvas></canvas>
<script>
 let cx = document.querySelector("canvas").getContext("2d");

 cx.beginPath();
 // center=(50,50) radius=40 angle=0 to 7
 cx.arc(50, 50, 40, 0, 7);
 // center=(150,50) radius=40 angle=0 to ½π
 cx.arc(150, 50, 40, 0, 0.5 * Math.PI);
 cx.stroke();
</script>

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 7/26

The resulting picture contains a line from the right of the full circle (first call
to arc) to the right of the quarter-circle (second call).

Like other path-drawing methods, a line drawn with arc is connected to the
previous path segment.You can call moveTo or start a new path to avoid this.

Drawing a pie chart

Imagine we’ve just taken a job at EconomiCorp, Inc. Your first assignment is
to draw a pie chart of its customer satisfaction survey results.

The results binding contains an array of objects that represent the survey
responses.

const results = [

 {name: "Satisfied", count: 1043, color: "lightblue"},
 {name: "Neutral", count: 563, color: "lightgreen"},
 {name: "Unsatisfied", count: 510, color: "pink"},

 {name: "No comment", count: 175, color: "silver"}
];

To draw a pie chart, we draw a number of pie slices, each made up of an arc
and a pair of lines to the center of that arc. We can compute the angle taken
up by each arc by dividing a full circle (2π) by the total number of responses
and then multiplying that number (the angle per response) by the number of
people who picked a given choice.

<canvas width="200" height="200"></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");
 let total = results
 .reduce((sum, {count}) => sum + count, 0);

 // Start at the top
 let currentAngle = -0.5 * Math.PI;
 for (let result of results) {

 let sliceAngle = (result.count / total) * 2 * Math.PI;
 cx.beginPath();
 // center=100,100, radius=100
 // from current angle, clockwise by slice's angle

 cx.arc(100, 100, 100,
 currentAngle, currentAngle + sliceAngle);

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 8/26

 currentAngle += sliceAngle;
 cx.lineTo(100, 100);

 cx.fillStyle = result.color;
 cx.fill();
 }
</script>

But a chart that doesn’t tell us what the slices mean isn’t very helpful. We
need a way to draw text to the canvas.

Text

A 2D canvas drawing context provides the methods fillText and
strokeText . The latter can be useful for outlining letters, but usually
fillText is what you need. It will fill the outline of the given text with the
current fillStyle .

<canvas></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");
 cx.font = "28px Georgia";
 cx.fillStyle = "fuchsia";

 cx.fillText("I can draw text, too!", 10, 50);
</script>

You can specify the size, style, and font of the text with the font property.
This example just gives a font size and family name. It is also possible to add
italic or bold to the start of the string to select a style.

The last two arguments to fillText and strokeText provide the position at
which the font is drawn. By default, they indicate the position of the start of
the text’s alphabetic baseline, which is the line that letters “stand” on, not
counting hanging parts in letters such as j or p. You can change the horizontal
position by setting the textAlign property to "end" or "center" and the
vertical position by setting textBaseline to "top" , "middle" , or "bottom" .

We’ll come back to our pie chart, and the problem of labeling the slices, in the
exercises at the end of the chapter.

Images

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 9/26

In computer graphics, a distinction is often made between vector graphics
and bitmap graphics. The first is what we have been doing so far in this
chapter—specifying a picture by giving a logical description of shapes. Bitmap
graphics, on the other hand, don’t specify actual shapes but rather work with
pixel data (rasters of colored dots).

The drawImage method allows us to draw pixel data onto a canvas. This pixel
data can originate from an element or from another canvas. The
following example creates a detached element and loads an image file
into it. But the method cannot immediately start drawing from this picture
because the browser may not have loaded it yet. To deal with this, we register
a "load" event handler and do the drawing after the image has loaded.

<canvas></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");
 let img = document.createElement("img");
 img.src = "img/hat.png";
 img.addEventListener("load", () => {

 for (let x = 10; x < 200; x += 30) {
 cx.drawImage(img, x, 10);
 }

 });
</script>

By default, drawImage will draw the image at its original size. You can also
give it two additional arguments to specify the width and height of the drawn
image, when those aren’t the same as origin image.

When drawImage is given nine arguments, it can be used to draw only a
fragment of an image. The second through fifth arguments indicate the
rectangle (x, y, width, and height) in the source image that should be copied,
and the sixth to ninth arguments give the rectangle (on the canvas) into which
it should be copied.

This can be used to pack multiple sprites (image elements) into a single image
file and then draw only the part you need. For example, this picture contains a
game character in multiple poses:

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 10/26

By alternating which pose we draw, we can show an animation that looks like
a walking character.

To animate a picture on a canvas, the clearRect method is useful. It
resembles fillRect , but instead of coloring the rectangle, it makes it
transparent, removing the previously drawn pixels.

We know that each sprite, each subpicture, is 24 pixels wide and 30 pixels
high. The following code loads the image and then sets up an interval
(repeated timer) to draw the next frame:

<canvas></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");
 let img = document.createElement("img");
 img.src = "img/player.png";
 let spriteW = 24, spriteH = 30;

 img.addEventListener("load", () => {
 let cycle = 0;
 setInterval(() => {

 cx.clearRect(0, 0, spriteW, spriteH);
 cx.drawImage(img,
 // source rectangle

 cycle * spriteW, 0, spriteW, spriteH,
 // destination rectangle
 0, 0, spriteW, spriteH);
 cycle = (cycle + 1) % 8;

 }, 120);
 });
</script>

The cycle binding tracks our position in the animation. For each frame, it is
incremented and then clipped back to the 0 to 7 range by using the remainder
operator. This binding is then used to compute the x-coordinate that the
sprite for the current pose has in the picture.

Transformation

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 11/26

What if we want our character to walk to the left instead of to the right? We
could draw another set of sprites, of course. But we could also instruct the
canvas to draw the picture the other way round.

Calling the scale method will cause anything drawn after it to be scaled. This
method takes two parameters, one to set a horizontal scale and one to set a
vertical scale.

<canvas></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");
 cx.scale(3, .5);
 cx.beginPath();
 cx.arc(50, 50, 40, 0, 7);

 cx.lineWidth = 3;
 cx.stroke();
</script>

Scaling will cause everything about the drawn image, including the line width,
to be stretched out or squeezed together as specified. Scaling by a negative
amount will flip the picture around. The flipping happens around point (0,0),
which means it will also flip the direction of the coordinate system. When a
horizontal scaling of -1 is applied, a shape drawn at x position 100 will end up
at what used to be position -100.

To turn a picture around, we can’t simply add cx.scale(-1, 1) before the
call to drawImage . That would move our picture outside of the canvas, where
it won’t be visible. We could adjust the coordinates given to drawImage to
compensate for this by drawing the image at x position -50 instead of 0.
Another solution, which doesn’t require the code doing the drawing to know
about the scale change, is to adjust the axis around which the scaling happens.

There are several other methods besides scale that influence the coordinate
system for a canvas. You can rotate subsequently drawn shapes with the
rotate method and move them with the translate method. The interesting
—and confusing—thing is that these transformations stack, meaning that each
one happens relative to the previous transformations.

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 12/26

If we translate by 10 horizontal pixels twice, everything will be drawn 20
pixels to the right. If we first move the center of the coordinate system to
(50,50) and then rotate by 20 degrees (about 0.1π radians), that rotation will
happen around point (50,50).

translate(50, 50)

rotate(0.1*Math.PI)

rotate(0.1*Math.PI)

translate(50, 50)

But if we first rotate by 20 degrees and then translate by (50,50), the
translation will happen in the rotated coordinate system and thus produce a
different orientation. The order in which transformations are applied matters.

To flip a picture around the vertical line at a given x position, we can do the
following:

function flipHorizontally(context, around) {
 context.translate(around, 0);
 context.scale(-1, 1);

 context.translate(-around, 0);
}

We move the y-axis to where we want our mirror to be, apply the mirroring,
and finally move the y-axis back to its proper place in the mirrored universe.
The following picture explains why this works:

mirror

1 23 4

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 13/26

This shows the coordinate systems before and after mirroring across the
central line. The triangles are numbered to illustrate each step. If we draw a
triangle at a positive x position, it would, by default, be in the place where
triangle 1 is. A call to flipHorizontally first does a translation to the right,
which gets us to triangle 2. It then scales, flipping the triangle over to position
3. This is not where it should be, if it were mirrored in the given line. The
second translate call fixes this—it “cancels” the initial translation and
makes triangle 4 appear exactly where it should.

We can now draw a mirrored character at position (100,0) by flipping the
world around the character’s vertical center.

<canvas></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");
 let img = document.createElement("img");
 img.src = "img/player.png";
 let spriteW = 24, spriteH = 30;

 img.addEventListener("load", () => {
 flipHorizontally(cx, 100 + spriteW / 2);
 cx.drawImage(img, 0, 0, spriteW, spriteH,

 100, 0, spriteW, spriteH);
 });
</script>

Storing and clearing transformations

Transformations stick around. Everything else we draw after drawing that
mirrored character would also be mirrored. That might be inconvenient.

It is possible to save the current transformation, do some drawing and
transforming, and then restore the old transformation. This is usually the
proper thing to do for a function that needs to temporarily transform the
coordinate system. First, we save whatever transformation the code that
called the function was using. Then the function does its thing, adding more
transformations on top of the current transformation. Finally, we revert to the
transformation we started with.

The save and restore methods on the 2D canvas context do this
transformation management. They conceptually keep a stack of

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 14/26

transformation states. When you call save , the current state is pushed onto
the stack, and when you call restore , the state on top of the stack is taken off
and used as the context’s current transformation. You can also call
resetTransform to fully reset the transformation.

The branch function in the following example illustrates what you can do
with a function that changes the transformation and then calls a function (in
this case itself), which continues drawing with the given transformation.

This function draws a treelike shape by drawing a line, moving the center of
the coordinate system to the end of the line, and calling itself twice—first
rotated to the left and then rotated to the right. Every call reduces the length
of the branch drawn, and the recursion stops when the length drops below 8.

<canvas width="600" height="300"></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");
 function branch(length, angle, scale) {
 cx.fillRect(0, 0, 1, length);
 if (length < 8) return;

 cx.save();
 cx.translate(0, length);
 cx.rotate(-angle);

 branch(length * scale, angle, scale);
 cx.rotate(2 * angle);
 branch(length * scale, angle, scale);

 cx.restore();
 }
 cx.translate(300, 0);
 branch(60, 0.5, 0.8);

</script>

If the calls to save and restore were not there, the second recursive call to
branch would end up with the position and rotation created by the first call.
It wouldn’t be connected to the current branch but rather to the innermost,
rightmost branch drawn by the first call. The resulting shape might also be
interesting, but it is definitely not a tree.

Back to the game

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 15/26

We now know enough about canvas drawing to start working on a canvas-
based display system for the game from the previous chapter. The new display
will no longer be showing just colored boxes. Instead, we’ll use drawImage to
draw pictures that represent the game’s elements.

We define another display object type called CanvasDisplay , supporting the
same interface as DOMDisplay from Chapter 16, namely, the methods
syncState and clear .

This object keeps a little more information than DOMDisplay . Rather than
using the scroll position of its DOM element, it tracks its own viewport, which
tells us which part of the level we are currently looking at. Finally, it keeps a
flipPlayer property so that even when the player is standing still, it keeps
facing the direction in which it last moved.

class CanvasDisplay {
 constructor(parent, level) {

 this.canvas = document.createElement("canvas");
 this.canvas.width = Math.min(600, level.width * scale);
 this.canvas.height = Math.min(450, level.height * scale);
 parent.appendChild(this.canvas);

 this.cx = this.canvas.getContext("2d");

 this.flipPlayer = false;

 this.viewport = {
 left: 0,

 top: 0,
 width: this.canvas.width / scale,
 height: this.canvas.height / scale
 };

 }

 clear() {

 this.canvas.remove();
 }
}

The syncState method first computes a new viewport and then draws the
game scene at the appropriate position.

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 16/26

https://eloquentjavascript.net/16_game.html
https://eloquentjavascript.net/16_game.html#domdisplay

CanvasDisplay.prototype.syncState = function(state) {
 this.updateViewport(state);

 this.clearDisplay(state.status);
 this.drawBackground(state.level);
 this.drawActors(state.actors);
};

Contrary to DOMDisplay , this display style does have to redraw the
background on every update. Because shapes on a canvas are just pixels, after
we draw them there is no good way to move them (or remove them). The only
way to update the canvas display is to clear it and redraw the scene. We may
also have scrolled, which requires the background to be in a different position.

The updateViewport method is similar to DOMDisplay ’s
scrollPlayerIntoView method. It checks whether the player is too close to
the edge of the screen and moves the viewport when this is the case.

CanvasDisplay.prototype.updateViewport = function(state) {
 let view = this.viewport, margin = view.width / 3;
 let player = state.player;

 let center = player.pos.plus(player.size.times(0.5));

 if (center.x < view.left + margin) {

 view.left = Math.max(center.x - margin, 0);
 } else if (center.x > view.left + view.width - margin) {
 view.left = Math.min(center.x + margin - view.width,
 state.level.width - view.width);

 }
 if (center.y < view.top + margin) {
 view.top = Math.max(center.y - margin, 0);

 } else if (center.y > view.top + view.height - margin) {
 view.top = Math.min(center.y + margin - view.height,
 state.level.height - view.height);

 }
};

The calls to Math.max and Math.min ensure that the viewport does not end
up showing space outside of the level. Math.max(x, 0) makes sure the
resulting number is not less than zero. Math.min similarly guarantees that a
value stays below a given bound.

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 17/26

When clearing the display, we’ll use a slightly different color depending on
whether the game is won (brighter) or lost (darker).

CanvasDisplay.prototype.clearDisplay = function(status) {
 if (status == "won") {

 this.cx.fillStyle = "rgb(68, 191, 255)";
 } else if (status == "lost") {
 this.cx.fillStyle = "rgb(44, 136, 214)";
 } else {

 this.cx.fillStyle = "rgb(52, 166, 251)";
 }
 this.cx.fillRect(0, 0,

 this.canvas.width, this.canvas.height);
};

To draw the background, we run through the tiles that are visible in the
current viewport, using the same trick used in the touches method from the
previous chapter.

let otherSprites = document.createElement("img");

otherSprites.src = "img/sprites.png";

CanvasDisplay.prototype.drawBackground = function(level) {
 let {left, top, width, height} = this.viewport;

 let xStart = Math.floor(left);
 let xEnd = Math.ceil(left + width);
 let yStart = Math.floor(top);

 let yEnd = Math.ceil(top + height);

 for (let y = yStart; y < yEnd; y++) {

 for (let x = xStart; x < xEnd; x++) {
 let tile = level.rows[y][x];
 if (tile == "empty") continue;
 let screenX = (x - left) * scale;

 let screenY = (y - top) * scale;
 let tileX = tile == "lava" ? scale : 0;
 this.cx.drawImage(otherSprites,

 tileX, 0, scale, scale,
 screenX, screenY, scale, scale);
 }

 }
};

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 18/26

https://eloquentjavascript.net/16_game.html#touches

Tiles that are not empty are drawn with drawImage . The otherSprites
image contains the pictures used for elements other than the player. It
contains, from left to right, the wall tile, the lava tile, and the sprite for a coin.

Background tiles are 20 by 20 pixels, since we’ll use the same scale as in
DOMDisplay . Thus, the offset for lava tiles is 20 (the value of the scale
binding), and the offset for walls is 0.

We don’t bother waiting for the sprite image to load. Calling drawImage with
an image that hasn’t been loaded yet will simply do nothing. Thus, we might
fail to draw the game properly for the first few frames while the image is still
loading, but that isn’t a serious problem. Since we keep updating the screen,
the correct scene will appear as soon as the loading finishes.

The walking character shown earlier will be used to represent the player. The
code that draws it needs to pick the right sprite and direction based on the
player’s current motion. The first eight sprites contain a walking animation.
When the player is moving along a floor, we cycle through them based on the
current time. We want to switch frames every 60 milliseconds, so the time is
divided by 60 first. When the player is standing still, we draw the ninth sprite.
During jumps, which are recognized by the fact that the vertical speed is not
zero, we use the tenth, rightmost sprite.

Because the sprites are slightly wider than the player object—24 instead of 16
pixels to allow some space for feet and arms—the method has to adjust the x-
coordinate and width by a given amount (playerXOverlap).

let playerSprites = document.createElement("img");
playerSprites.src = "img/player.png";

const playerXOverlap = 4;

CanvasDisplay.prototype.drawPlayer = function(player, x, y,
 width, height){

 width += playerXOverlap * 2;
 x -= playerXOverlap;
 if (player.speed.x != 0) {

 this.flipPlayer = player.speed.x < 0;

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 19/26

 }

 let tile = 8;
 if (player.speed.y != 0) {
 tile = 9;
 } else if (player.speed.x != 0) {

 tile = Math.floor(Date.now() / 60) % 8;
 }

 this.cx.save();
 if (this.flipPlayer) {
 flipHorizontally(this.cx, x + width / 2);

 }
 let tileX = tile * width;
 this.cx.drawImage(playerSprites, tileX, 0, width, height,
 x, y, width, height);

 this.cx.restore();
};

The drawPlayer method is called by drawActors , which is responsible for
drawing all the actors in the game.

CanvasDisplay.prototype.drawActors = function(actors) {

 for (let actor of actors) {
 let width = actor.size.x * scale;
 let height = actor.size.y * scale;

 let x = (actor.pos.x - this.viewport.left) * scale;
 let y = (actor.pos.y - this.viewport.top) * scale;
 if (actor.type == "player") {
 this.drawPlayer(actor, x, y, width, height);

 } else {
 let tileX = (actor.type == "coin" ? 2 : 1) * scale;
 this.cx.drawImage(otherSprites,

 tileX, 0, width, height,
 x, y, width, height);
 }

 }
};

When drawing something that is not the player, we look at its type to find the
offset of the correct sprite. The lava tile is found at offset 20, and the coin
sprite is found at 40 (two times scale).

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 20/26

We have to subtract the viewport’s position when computing the actor’s
position, since (0,0) on our canvas corresponds to the top left of the viewport,
not the top left of the level. We could also have used translate for this.
Either way works.

This document plugs the new display into runGame :

<body>
 <script>

 runGame(GAME_LEVELS, CanvasDisplay);
 </script>
</body>

Choosing a graphics interface

When you need to generate graphics in the browser, you can choose between
plain HTML, SVG, and canvas. There is no single best approach that works in
all situations. Each option has strengths and weaknesses.

Plain HTML has the advantage of being simple. It also integrates well with
text. Both SVG and canvas allow you to draw text, but they won’t help you
position that text or wrap it when it takes up more than one line. In an
HTML-based picture, it is much easier to include blocks of text.

SVG can be used to produce crisp graphics that look good at any zoom level.
Unlike HTML, it is designed for drawing and is thus more suitable for that
purpose.

Both SVG and HTML build up a data structure (the DOM) that represents
your picture. This makes it possible to modify elements after they are drawn.
If you need to repeatedly change a small part of a big picture in response to
what the user is doing or as part of an animation, doing it in a canvas can be
needlessly expensive. The DOM also allows us to register mouse event
handlers on every element in the picture (even on shapes drawn with SVG).
You can’t do that with canvas.

But canvas’s pixel-oriented approach can be an advantage when drawing a
huge number of tiny elements. The fact that it does not build up a data
structure but only repeatedly draws onto the same pixel surface gives canvas a

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 21/26

lower cost per shape. There are also effects that are only practical with a
canvas element, such as rendering a scene one pixel at a time (for example,
using a ray tracer) or postprocessing an image with JavaScript (blurring or
distorting it).

In some cases, you may want to combine several of these techniques. For
example, you might draw a graph with SVG or canvas but show textual
information by positioning an HTML element on top of the picture.

For nondemanding applications, it really doesn’t matter much which interface
you choose. The display we built for our game in this chapter could have been
implemented using any of these three graphics technologies, since it does not
need to draw text, handle mouse interaction, or work with an extraordinarily
large number of elements.

Summary

In this chapter we discussed techniques for drawing graphics in the browser,
focusing on the <canvas> element.

A canvas node represents an area in a document that our program may draw
on. This drawing is done through a drawing context object, created with the
getContext method.

The 2D drawing interface allows us to fill and stroke various shapes. The
context’s fillStyle property determines how shapes are filled. The
strokeStyle and lineWidth properties control the way lines are drawn.

Rectangles and pieces of text can be drawn with a single method call. The
fillRect and strokeRect methods draw rectangles, and the fillText and
strokeText methods draw text. To create custom shapes, we must first build
up a path.

Calling beginPath starts a new path. A number of other methods add lines
and curves to the current path. For example, lineTo can add a straight line.
When a path is finished, it can be filled with the fill method or stroked with
the stroke method.

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 22/26

Moving pixels from an image or another canvas onto our canvas is done with
the drawImage method. By default, this method draws the whole source
image, but by giving it more parameters, you can copy a specific area of the
image. We used this for our game by copying individual poses of the game
character out of an image that contained many such poses.

Transformations allow you to draw a shape in multiple orientations. A 2D
drawing context has a current transformation that can be changed with the
translate , scale , and rotate methods. These will affect all subsequent
drawing operations. A transformation state can be saved with the save
method and restored with the restore method.

When showing an animation on a canvas, the clearRect method can be used
to clear part of the canvas before redrawing it.

Exercises

Shapes

Write a program that draws the following shapes on a canvas:

When drawing the last two shapes, you may want to refer to the explanation
of Math.cos and Math.sin in Chapter 14, which describes how to get
coordinates on a circle using these functions.

I recommend creating a function for each shape. Pass the position, and
optionally other properties such as the size or the number of points, as

A trapezoid (a rectangle that is wider on one side)1.

A red diamond (a rectangle rotated 45 degrees or ¼π radians)2.

A zigzagging line3.

A spiral made up of 100 straight line segments4.

A yellow star5.

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 23/26

https://eloquentjavascript.net/14_dom.html#sin_cos

parameters. The alternative, which is to hard-code numbers all over your
code, tends to make the code needlessly hard to read and modify.

<canvas width="600" height="200"></canvas>
<script>

 let cx = document.querySelector("canvas").getContext("2d");

 // Your code here.
</script>

Display hints...

The pie chart

Earlier in the chapter, we saw an example program that drew a pie chart.
Modify this program so that the name of each category is shown next to the
slice that represents it. Try to find a pleasing-looking way to automatically
position this text that would work for other datasets as well. You may assume
that categories are big enough to leave enough room for their labels.

You might need Math.sin and Math.cos again, which are described in
Chapter 14.

<canvas width="600" height="300"></canvas>
<script>
 let cx = document.querySelector("canvas").getContext("2d");

 let total = results
 .reduce((sum, {count}) => sum + count, 0);
 let currentAngle = -0.5 * Math.PI;

 let centerX = 300, centerY = 150;

 // Add code to draw the slice labels in this loop.
 for (let result of results) {

 let sliceAngle = (result.count / total) * 2 * Math.PI;
 cx.beginPath();
 cx.arc(centerX, centerY, 100,

 currentAngle, currentAngle + sliceAngle);
 currentAngle += sliceAngle;
 cx.lineTo(centerX, centerY);

 cx.fillStyle = result.color;
 cx.fill();

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 24/26

https://eloquentjavascript.net/14_dom.html#sin_cos

 }
</script>

Display hints...

A bouncing ball

Use the requestAnimationFrame technique that we saw in Chapter 14 and
Chapter 16 to draw a box with a bouncing ball in it. The ball moves at a
constant speed and bounces off the box’s sides when it hits them.

<canvas width="400" height="400"></canvas>
<script>
 let cx = document.querySelector("canvas").getContext("2d");

 let lastTime = null;
 function frame(time) {
 if (lastTime != null) {

 updateAnimation(Math.min(100, time - lastTime) / 1000);
 }
 lastTime = time;

 requestAnimationFrame(frame);
 }
 requestAnimationFrame(frame);

 function updateAnimation(step) {
 // Your code here.
 }

</script>

Display hints...

Precomputed mirroring

One unfortunate thing about transformations is that they slow down the
drawing of bitmaps. The position and size of each pixel has to be transformed,
and though it is possible that browsers will get cleverer about transformation
in the future, they currently cause a measurable increase in the time it takes to
draw a bitmap.

In a game like ours, where we are drawing only a single transformed sprite,
this is a nonissue. But imagine that we need to draw hundreds of characters or

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 25/26

https://eloquentjavascript.net/14_dom.html#animationFrame
https://eloquentjavascript.net/16_game.html#runAnimation

thousands of rotating particles from an explosion.

Think of a way to draw an inverted character without loading additional
image files and without having to make transformed drawImage calls every
frame.

Display hints...
◂ ● ▸ ?

27/06/2024, 18:48 Drawing on Canvas :: Eloquent JavaScript

https://eloquentjavascript.net/17_canvas.html 26/26

https://eloquentjavascript.net/16_game.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/18_http.html

