
◂ ● ▸ ?
Project: A Platform Game

Much of my initial fascination with computers, like that of many nerdy kids,
had to do with computer games. I was drawn into the tiny simulated worlds
that I could manipulate and in which stories (sort of) unfolded—more, I
suppose, because of the way I projected my imagination into them than
because of the possibilities they actually offered.

I don’t wish a career in game programming on anyone. Much like the music
industry, the discrepancy between the number of eager young people wanting
to work in it and the actual demand for such people creates a rather unhealthy
environment. But writing games for fun is amusing.

This chapter will walk through the implementation of a small platform game.
Platform games (or “jump and run” games) are games that expect the player
to move a figure through a world, which is usually two-dimensional and
viewed from the side, while jumping over and onto things.

The game

All reality is a game.”“

Iain Banks, The Player of Games—

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 1/28

https://eloquentjavascript.net/15_event.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/17_canvas.html

Our game will be roughly based on Dark Blue by Thomas Palef. I chose that
game because it is both entertaining and minimalist and because it can be
built without too much code. It looks like this:

The dark box represents the player, whose task is to collect the yellow boxes
(coins) while avoiding the red stuff (lava). A level is completed when all coins
have been collected.

The player can walk around with the left and right arrow keys and can jump
with the up arrow. Jumping is this game character’s specialty. It can reach
several times its own height and can change direction in midair. This may not
be entirely realistic, but it helps give the player the feeling of being in direct
control of the on-screen avatar.

The game consists of a static background, laid out like a grid, with the moving
elements overlaid on that background. Each field on the grid is either empty,
solid, or lava. The moving elements are the player, coins, and certain pieces of
lava. The positions of these elements are not constrained to the grid—their
coordinates may be fractional, allowing smooth motion.

The technology

We will use the browser DOM to display the game, and we’ll read user input
by handling key events.

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 2/28

http://www.lessmilk.com/games/10

The screen- and keyboard-related code is only a small part of the work we
need to do to build this game. Since everything looks like colored boxes,
drawing is uncomplicated: we create DOM elements and use styling to give
them a background color, size, and position.

We can represent the background as a table, since it is an unchanging grid of
squares. The free-moving elements can be overlaid using absolutely
positioned elements.

In games and other programs that should animate graphics and respond to
user input without noticeable delay, efficiency is important. Although the
DOM was not originally designed for high-performance graphics, it is actually
better at this than you would expect. You saw some animations in Chapter 14.
On a modern machine, a simple game like this performs well, even if we don’t
worry about optimization very much.

In the next chapter, we will explore another browser technology, the
<canvas> tag, which provides a more traditional way to draw graphics,
working in terms of shapes and pixels rather than DOM elements.

Levels

We’ll want a human-readable, human-editable way to specify levels. Since it is
okay for everything to start out on a grid, we could use big strings in which
each character represents an element—either a part of the background grid or
a moving element.

The plan for a small level might look like this:

let simpleLevelPlan = `

......................

..#................#..

..#..............=.#..

..#.........o.o....#..

..#.@......#####...#..

..#####............#..

......#++++++++++++#..

......##############..

......................`;

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 3/28

https://eloquentjavascript.net/14_dom.html#animation
https://eloquentjavascript.net/17_canvas.html

Periods are empty space, hash (#) characters are walls, and plus signs are
lava. The player’s starting position is the at sign (@). Every O character is a
coin, and the equal sign (=) at the top is a block of lava that moves back and
forth horizontally.

We’ll support two additional kinds of moving lava: the pipe character (|)
creates vertically moving blobs, and v indicates dripping lava—vertically
moving lava that doesn’t bounce back and forth but only moves down,
jumping back to its start position when it hits the floor.

A whole game consists of multiple levels that the player must complete. A
level is completed when all coins have been collected. If the player touches
lava, the current level is restored to its starting position, and the player may
try again.

Reading a level

The following class stores a level object. Its argument should be the string that
defines the level.

class Level {

 constructor(plan) {
 let rows = plan.trim().split("\n").map(l => [...l]);
 this.height = rows.length;

 this.width = rows[0].length;
 this.startActors = [];

 this.rows = rows.map((row, y) => {

 return row.map((ch, x) => {
 let type = levelChars[ch];
 if (typeof type != "string") {

 let pos = new Vec(x, y);
 this.startActors.push(type.create(pos, ch));
 type = "empty";

 }
 return type;
 });
 });

 }
}

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 4/28

The trim method is used to remove whitespace at the start and end of the
plan string. This allows our example plan to start with a newline so that all
lines are directly below each other. The remaining string is split on newline
characters, and each line is spread into an array, producing arrays of
characters.

So rows holds an array of arrays of characters, the rows of the plan. We can
derive the level’s width and height from these. But we must still separate the
moving elements from the background grid. We’ll call moving elements
actors. They’ll be stored in an array of objects. The background will be an
array of arrays of strings, holding field types such as "empty" , "wall" , or
"lava" .

To create these arrays, we map over the rows and then over their content.
Remember that map passes the array index as a second argument to the
mapping function, which tells us the x- and y-coordinates of a given character.
Positions in the game will be stored as pairs of coordinates, with the top left
being 0,0 and each background square being 1 unit high and wide.

To interpret the characters in the plan, the Level constructor uses the
levelChars object, which, for each character used in the level descriptions,
holds a string if it is a background type, and a class if it produces an actor.
When type is an actor class, its static create method is used to create an
object, which is added to startActors , and the mapping function returns
"empty" for this background square.

The position of the actor is stored as a Vec object. This is a two-dimensional
vector, an object with x and y properties, as seen in the exercises of Chapter
6.

As the game runs, actors will end up in different places or even disappear
entirely (as coins do when collected). We’ll use a State class to track the state
of a running game.

class State {
 constructor(level, actors, status) {

 this.level = level;
 this.actors = actors;
 this.status = status;

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 5/28

https://eloquentjavascript.net/06_object.html#exercise_vector
https://eloquentjavascript.net/06_object.html#exercise_vector

 }

 static start(level) {
 return new State(level, level.startActors, "playing");
 }

 get player() {
 return this.actors.find(a => a.type == "player");
 }

}

The status property will switch to "lost" or "won" when the game has
ended.

This is again a persistent data structure—updating the game state creates a
new state and leaves the old one intact.

Actors

Actor objects represent the current position and state of a given moving
element (player, coin, or mobile lava) in our game. All actor objects conform
to the same interface. They have size and pos properties holding the size
and the coordinates of the top-left corner of the rectangle representing this
actor, and an update method.

This update method is used to compute their new state and position after a
given time step. It simulates the thing the actor does—moving in response to
the arrow keys for the player and bouncing back and forth for the lava—and
returns a new, updated actor object.

A type property contains a string that identifies the type of the actor
—"player" , "coin" , or "lava" . This is useful when drawing the game—the
look of the rectangle drawn for an actor is based on its type.

Actor classes have a static create method that is used by the Level
constructor to create an actor from a character in the level plan. It is given the
coordinates of the character and the character itself, which is necessary
because the Lava class handles several different characters.

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 6/28

This is the Vec class that we’ll use for our two-dimensional values, such as the
position and size of actors.

class Vec {
 constructor(x, y) {

 this.x = x; this.y = y;
 }
 plus(other) {
 return new Vec(this.x + other.x, this.y + other.y);

 }
 times(factor) {
 return new Vec(this.x * factor, this.y * factor);

 }
}

The times method scales a vector by a given number. It will be useful when
we need to multiply a speed vector by a time interval to get the distance
traveled during that time.

The different types of actors get their own classes since their behavior is very
different. Let’s define these classes. We’ll get to their update methods later.

The player class has a speed property that stores its current speed to simulate
momentum and gravity.

class Player {

 constructor(pos, speed) {
 this.pos = pos;
 this.speed = speed;
 }

 get type() { return "player"; }

 static create(pos) {
 return new Player(pos.plus(new Vec(0, -0.5)),
 new Vec(0, 0));

 }
}

Player.prototype.size = new Vec(0.8, 1.5);

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 7/28

Because a player is one-and-a-half squares high, its initial position is set to be
half a square above the position where the @ character appeared. This way, its
bottom aligns with the bottom of the square where it appeared.

The size property is the same for all instances of Player , so we store it on
the prototype rather than on the instances themselves. We could have used a
getter like type , but that would create and return a new Vec object every
time the property is read, which would be wasteful. (Strings, being
immutable, don’t have to be re-created every time they are evaluated.)

When constructing a Lava actor, we need to initialize the object differently
depending on the character it is based on. Dynamic lava moves along at its
current speed until it hits an obstacle. At that point, if it has a reset
property, it will jump back to its start position (dripping). If it does not, it will
invert its speed and continue in the other direction (bouncing).

The create method looks at the character that the Level constructor passes
and creates the appropriate lava actor.

class Lava {
 constructor(pos, speed, reset) {

 this.pos = pos;
 this.speed = speed;
 this.reset = reset;
 }

 get type() { return "lava"; }

 static create(pos, ch) {
 if (ch == "=") {
 return new Lava(pos, new Vec(2, 0));

 } else if (ch == "|") {
 return new Lava(pos, new Vec(0, 2));
 } else if (ch == "v") {
 return new Lava(pos, new Vec(0, 3), pos);

 }
 }
}

Lava.prototype.size = new Vec(1, 1);

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 8/28

Coin actors are relatively simple. They mostly just sit in their place. But to
liven up the game a little, they are given a “wobble”, a slight vertical back-and-
forth motion. To track this, a coin object stores a base position as well as a
wobble property that tracks the phase of the bouncing motion. Together,
these determine the coin’s actual position (stored in the pos property).

class Coin {
 constructor(pos, basePos, wobble) {

 this.pos = pos;
 this.basePos = basePos;
 this.wobble = wobble;
 }

 get type() { return "coin"; }

 static create(pos) {
 let basePos = pos.plus(new Vec(0.2, 0.1));
 return new Coin(basePos, basePos,

 Math.random() * Math.PI * 2);
 }
}

Coin.prototype.size = new Vec(0.6, 0.6);

In Chapter 14, we saw that Math.sin gives us the y-coordinate of a point on a
circle. That coordinate goes back and forth in a smooth waveform as we move
along the circle, which makes the sine function useful for modeling a wavy
motion.

To avoid a situation where all coins move up and down synchronously, the
starting phase of each coin is randomized. The period of Math.sin ’s wave, the
width of a wave it produces, is 2π. We multiply the value returned by
Math.random by that number to give the coin a random starting position on
the wave.

We can now define the levelChars object that maps plan characters to either
background grid types or actor classes.

const levelChars = {
 ".": "empty", "#": "wall", "+": "lava",

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 9/28

https://eloquentjavascript.net/14_dom.html#sin_cos

 "@": Player, "o": Coin,
 "=": Lava, "|": Lava, "v": Lava

};

That gives us all the parts needed to create a Level instance.

let simpleLevel = new Level(simpleLevelPlan);
console.log(`${simpleLevel.width} by ${simpleLevel.height}`);
// → 22 by 9

The task ahead is to display such levels on the screen and to model time and
motion inside them.

Drawing

In the next chapter, we’ll display the same game in a different way. To make
that possible, we put the drawing logic behind an interface and pass it to the
game as an argument. That way, we can use the same game program with
different new display modules.

A game display object draws a given level and state. We pass its constructor to
the game to allow it to be replaced. The display class we define in this chapter
is called DOMDisplay because it uses DOM elements to show the level.

We’ll be using a style sheet to set the actual colors and other fixed properties
of the elements that make up the game. It would also be possible to directly
assign to the elements’ style property when we create them, but that would
produce more verbose programs.

The following helper function provides a succinct way to create an element
and give it some attributes and child nodes:

function elt(name, attrs, ...children) {
 let dom = document.createElement(name);

 for (let attr of Object.keys(attrs)) {
 dom.setAttribute(attr, attrs[attr]);
 }

 for (let child of children) {
 dom.appendChild(child);
 }

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 10/28

https://eloquentjavascript.net/17_canvas.html#canvasdisplay

 return dom;
}

A display is created by giving it a parent element to which it should append
itself and a level object.

class DOMDisplay {
 constructor(parent, level) {
 this.dom = elt("div", {class: "game"}, drawGrid(level));
 this.actorLayer = null;

 parent.appendChild(this.dom);
 }

 clear() { this.dom.remove(); }
}

The level’s background grid, which never changes, is drawn once. Actors are
redrawn every time the display is updated with a given state. The actorLayer
property will be used to track the element that holds the actors so that they
can be easily removed and replaced.

Our coordinates and sizes are tracked in grid units, where a size or distance of
1 means one grid block. When setting pixel sizes, we will have to scale these
coordinates up—everything in the game would be ridiculously small at a
single pixel per square. The scale constant gives the number of pixels that a
single unit takes up on the screen.

const scale = 20;

function drawGrid(level) {
 return elt("table", {
 class: "background",

 style: `width: ${level.width * scale}px`
 }, ...level.rows.map(row =>
 elt("tr", {style: `height: ${scale}px`},

 ...row.map(type => elt("td", {class: type})))
));
}

The <table> element’s form nicely corresponds to the structure of the rows
property of the level—each row of the grid is turned into a table row (<tr>

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 11/28

element). The strings in the grid are used as class names for the table cell
(<td>) elements. The code uses the spread (triple dot) operator to pass arrays
of child nodes to elt as separate arguments.

The following CSS makes the table look like the background we want:

.background { background: rgb(52, 166, 251);
 table-layout: fixed;

 border-spacing: 0; }
.background td { padding: 0; }
.lava { background: rgb(255, 100, 100); }
.wall { background: white; }

Some of these (table-layout , border-spacing , and padding) are used to
suppress unwanted default behavior. We don’t want the layout of the table to
depend upon the contents of its cells, and we don’t want space between the
table cells or padding inside them.

The background rule sets the background color. CSS allows colors to be
specified both as words (white) or with a format such as rgb(R, G, B) ,
where the red, green, and blue components of the color are separated into
three numbers from 0 to 255. In rgb(52, 166, 251) , the red component is
52, green is 166, and blue is 251. Since the blue component is the largest, the
resulting color will be bluish. In the .lava rule, the first number (red) is the
largest.

We draw each actor by creating a DOM element for it and setting that
element’s position and size based on the actor’s properties. The values must
be multiplied by scale to go from game units to pixels.

function drawActors(actors) {
 return elt("div", {}, ...actors.map(actor => {
 let rect = elt("div", {class: `actor ${actor.type}`});

 rect.style.width = `${actor.size.x * scale}px`;
 rect.style.height = `${actor.size.y * scale}px`;
 rect.style.left = `${actor.pos.x * scale}px`;

 rect.style.top = `${actor.pos.y * scale}px`;
 return rect;
 }));
}

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 12/28

To give an element more than one class, we separate the class names by
spaces. In the following CSS code, the actor class gives the actors their
absolute position. Their type name is used as an extra class to give them a
color. We don’t have to define the lava class again because we’re reusing the
class for the lava grid squares we defined earlier.

.actor { position: absolute; }

.coin { background: rgb(241, 229, 89); }

.player { background: rgb(64, 64, 64); }

The syncState method is used to make the display show a given state. It first
removes the old actor graphics, if any, and then redraws the actors in their
new positions. It may be tempting to try to reuse the DOM elements for
actors, but to make that work, we would need a lot of additional bookkeeping
to associate actors with DOM elements and to make sure we remove elements
when their actors vanish. Since there will typically be only a handful of actors
in the game, redrawing all of them is not expensive.

DOMDisplay.prototype.syncState = function(state) {
 if (this.actorLayer) this.actorLayer.remove();
 this.actorLayer = drawActors(state.actors);

 this.dom.appendChild(this.actorLayer);
 this.dom.className = `game ${state.status}`;
 this.scrollPlayerIntoView(state);

};

By adding the level’s current status as a class name to the wrapper, we can
style the player actor slightly differently when the game is won or lost by
adding a CSS rule that takes effect only when the player has an ancestor
element with a given class.

.lost .player {
 background: rgb(160, 64, 64);

}
.won .player {
 box-shadow: -4px -7px 8px white, 4px -7px 8px white;
}

After touching lava, the player’s color turns dark red, suggesting scorching.
When the last coin has been collected, we add two blurred white shadows—

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 13/28

one to the top left and one to the top right—to create a white halo effect.

We can’t assume that the level always fits in the viewport, the element into
which we draw the game. That is why we need the scrollPlayerIntoView
call: it ensures that if the level is protruding outside the viewport, we scroll
that viewport to make sure the player is near its center. The following CSS
gives the game’s wrapping DOM element a maximum size and ensures that
anything that sticks out of the element’s box is not visible. We also give it a
relative position so that the actors inside it are positioned relative to the
level’s top-left corner.

.game {
 overflow: hidden;

 max-width: 600px;
 max-height: 450px;
 position: relative;
}

In the scrollPlayerIntoView method, we find the player’s position and
update the wrapping element’s scroll position. We change the scroll position
by manipulating that element’s scrollLeft and scrollTop properties when
the player is too close to the edge.

DOMDisplay.prototype.scrollPlayerIntoView = function(state) {
 let width = this.dom.clientWidth;
 let height = this.dom.clientHeight;

 let margin = width / 3;

 // The viewport

 let left = this.dom.scrollLeft, right = left + width;
 let top = this.dom.scrollTop, bottom = top + height;

 let player = state.player;

 let center = player.pos.plus(player.size.times(0.5))
 .times(scale);

 if (center.x < left + margin) {
 this.dom.scrollLeft = center.x - margin;
 } else if (center.x > right - margin) {

 this.dom.scrollLeft = center.x + margin - width;
 }

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 14/28

 if (center.y < top + margin) {
 this.dom.scrollTop = center.y - margin;

 } else if (center.y > bottom - margin) {
 this.dom.scrollTop = center.y + margin - height;
 }
};

The way the player’s center is found shows how the methods on our Vec type
allow computations with objects to be written in a relatively readable way. To
find the actor’s center, we add its position (its top-left corner) and half its size.
That is the center in level coordinates, but we need it in pixel coordinates, so
we then multiply the resulting vector by our display scale.

Next, a series of checks verifies that the player position isn’t outside of the
allowed range. Note that sometimes this will set nonsense scroll coordinates
that are below zero or beyond the element’s scrollable area. This is okay—the
DOM will constrain them to acceptable values. Setting scrollLeft to -10
will cause it to become 0 .

While it would have been slightly simpler to always try to scroll the player to
the center of the viewport, this creates a rather jarring effect. As you are
jumping, the view will constantly shift up and down. It’s more pleasant to
have a “neutral” area in the middle of the screen where you can move around
without causing any scrolling.

We are now able to display our tiny level.

<link rel="stylesheet" href="css/game.css">

<script>

 let simpleLevel = new Level(simpleLevelPlan);
 let display = new DOMDisplay(document.body, simpleLevel);
 display.syncState(State.start(simpleLevel));

</script>

The <link> tag, when used with rel="stylesheet" , is a way to load a CSS
file into a page. The file game.css contains the styles necessary for our game.

Motion and collision

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 15/28

Now we’re at the point where we can start adding motion. The basic approach
taken by most games like this is to split time into small steps and, for each
step, move the actors by a distance corresponding to their speed multiplied by
the size of the time step. We’ll measure time in seconds, so speeds are
expressed in units per second.

Moving things is easy. The difficult part is dealing with the interactions
between the elements. When the player hits a wall or floor, they should not
simply move through it. The game must notice when a given motion causes an
object to hit another object and respond accordingly. For walls, the motion
must be stopped. When hitting a coin, that coin must be collected. When
touching lava, the game should be lost.

Solving this for the general case is a major task. You can find libraries, usually
called physics engines, that simulate interaction between physical objects in
two or three dimensions. We’ll take a more modest approach in this chapter,
handling only collisions between rectangular objects and handling them in a
rather simplistic way.

Before moving the player or a block of lava, we test whether the motion would
take it inside of a wall. If it does, we simply cancel the motion altogether. The
response to such a collision depends on the type of actor—the player will stop,
whereas a lava block will bounce back.

This approach requires our time steps to be rather small, since it will cause
motion to stop before the objects actually touch. If the time steps (and thus
the motion steps) are too big, the player would end up hovering a noticeable
distance above the ground. Another approach, arguably better but more
complicated, would be to find the exact collision spot and move there. We will
take the simple approach and hide its problems by ensuring the animation
proceeds in small steps.

This method tells us whether a rectangle (specified by a position and a size)
touches a grid element of the given type.

Level.prototype.touches = function(pos, size, type) {
 let xStart = Math.floor(pos.x);

 let xEnd = Math.ceil(pos.x + size.x);

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 16/28

 let yStart = Math.floor(pos.y);
 let yEnd = Math.ceil(pos.y + size.y);

 for (let y = yStart; y < yEnd; y++) {
 for (let x = xStart; x < xEnd; x++) {
 let isOutside = x < 0 || x >= this.width ||

 y < 0 || y >= this.height;
 let here = isOutside ? "wall" : this.rows[y][x];
 if (here == type) return true;

 }
 }
 return false;

};

The method computes the set of grid squares that the body overlaps with by
using Math.floor and Math.ceil on its coordinates. Remember that grid
squares are 1 by 1 units in size. By rounding the sides of a box up and down,
we get the range of background squares that the box touches.

We loop over the block of grid squares found by rounding the coordinates and
return true when a matching square is found. Squares outside of the level are
always treated as "wall" to ensure that the player can’t leave the world and
that we won’t accidentally try to read outside of the bounds of our rows array.

The state update method uses touches to figure out whether the player is
touching lava.

State.prototype.update = function(time, keys) {
 let actors = this.actors
 .map(actor => actor.update(time, this, keys));

 let newState = new State(this.level, actors, this.status);

 if (newState.status != "playing") return newState;

 let player = newState.player;
 if (this.level.touches(player.pos, player.size, "lava")) {

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 17/28

 return new State(this.level, actors, "lost");
 }

 for (let actor of actors) {
 if (actor != player && overlap(actor, player)) {
 newState = actor.collide(newState);

 }
 }
 return newState;

};

The method is passed a time step and a data structure that tells it which keys
are being held down. The first thing it does is call the update method on all
actors, producing an array of updated actors. The actors also get the time step,
the keys, and the state, so that they can base their update on those. Only the
player will actually read keys, since that’s the only actor that’s controlled by
the keyboard.

If the game is already over, no further processing has to be done (the game
can’t be won after being lost, or vice versa). Otherwise, the method tests
whether the player is touching background lava. If so, the game is lost and
we’re done. Finally, if the game really is still going on, it sees whether any
other actors overlap the player.

Overlap between actors is detected with the overlap function. It takes two
actor objects and returns true when they touch—which is the case when they
overlap both along the x-axis and along the y-axis.

function overlap(actor1, actor2) {
 return actor1.pos.x + actor1.size.x > actor2.pos.x &&

 actor1.pos.x < actor2.pos.x + actor2.size.x &&
 actor1.pos.y + actor1.size.y > actor2.pos.y &&
 actor1.pos.y < actor2.pos.y + actor2.size.y;
}

If any actor does overlap, its collide method gets a chance to update the
state. Touching a lava actor sets the game status to "lost" . Coins vanish
when you touch them and set the status to "won" when they are the last coin
of the level.

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 18/28

Lava.prototype.collide = function(state) {
 return new State(state.level, state.actors, "lost");

};

Coin.prototype.collide = function(state) {
 let filtered = state.actors.filter(a => a != this);

 let status = state.status;
 if (!filtered.some(a => a.type == "coin")) status = "won";
 return new State(state.level, filtered, status);

};

Actor updates

Actor objects’ update methods take as arguments the time step, the state
object, and a keys object. The one for the Lava actor type ignores the keys
object.

Lava.prototype.update = function(time, state) {

 let newPos = this.pos.plus(this.speed.times(time));
 if (!state.level.touches(newPos, this.size, "wall")) {
 return new Lava(newPos, this.speed, this.reset);

 } else if (this.reset) {
 return new Lava(this.reset, this.speed, this.reset);
 } else {
 return new Lava(this.pos, this.speed.times(-1));

 }
};

This update method computes a new position by adding the product of the
time step and the current speed to its old position. If no obstacle blocks that
new position, it moves there. If there is an obstacle, the behavior depends on
the type of the lava block—dripping lava has a reset position, to which it
jumps back when it hits something. Bouncing lava inverts its speed by
multiplying it by -1 so that it starts moving in the opposite direction.

Coins use their update method to wobble. They ignore collisions with the
grid since they are simply wobbling around inside of their own square.

const wobbleSpeed = 8, wobbleDist = 0.07;

Coin.prototype.update = function(time) {

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 19/28

 let wobble = this.wobble + time * wobbleSpeed;
 let wobblePos = Math.sin(wobble) * wobbleDist;

 return new Coin(this.basePos.plus(new Vec(0, wobblePos)),
 this.basePos, wobble);
};

The wobble property is incremented to track time and then used as an
argument to Math.sin to find the new position on the wave. The coin’s
current position is then computed from its base position and an offset based
on this wave.

That leaves the player itself. Player motion is handled separately per axis
because hitting the floor should not prevent horizontal motion, and hitting a
wall should not stop falling or jumping motion.

const playerXSpeed = 7;

const gravity = 30;
const jumpSpeed = 17;

Player.prototype.update = function(time, state, keys) {
 let xSpeed = 0;
 if (keys.ArrowLeft) xSpeed -= playerXSpeed;

 if (keys.ArrowRight) xSpeed += playerXSpeed;
 let pos = this.pos;
 let movedX = pos.plus(new Vec(xSpeed * time, 0));
 if (!state.level.touches(movedX, this.size, "wall")) {

 pos = movedX;
 }

 let ySpeed = this.speed.y + time * gravity;
 let movedY = pos.plus(new Vec(0, ySpeed * time));
 if (!state.level.touches(movedY, this.size, "wall")) {

 pos = movedY;
 } else if (keys.ArrowUp && ySpeed > 0) {
 ySpeed = -jumpSpeed;
 } else {

 ySpeed = 0;
 }
 return new Player(pos, new Vec(xSpeed, ySpeed));

};

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 20/28

The horizontal motion is computed based on the state of the left and right
arrow keys. When there’s no wall blocking the new position created by this
motion, it is used. Otherwise, the old position is kept.

Vertical motion works in a similar way but has to simulate jumping and
gravity. The player’s vertical speed (ySpeed) is first accelerated to account for
gravity.

We check for walls again. If we don’t hit any, the new position is used. If there
is a wall, there are two possible outcomes. When the up arrow is pressed and
we are moving down (meaning the thing we hit is below us), the speed is set to
a relatively large, negative value. This causes the player to jump. If that is not
the case, the player simply bumped into something, and the speed is set to
zero.

The gravity strength, jumping speed, and other constants in the game were
determined by simply trying out some numbers and seeing which ones felt
right. You can try experimenting with them.

Tracking keys

For a game like this, we do not want keys to take effect once per keypress.
Rather, we want their effect (moving the player figure) to stay active as long as
they are held.

We need to set up a key handler that stores the current state of the left, right,
and up arrow keys. We will also want to call preventDefault for those keys
so that they don’t end up scrolling the page.

The following function, when given an array of key names, will return an
object that tracks the current position of those keys. It registers event
handlers for "keydown" and "keyup" events and, when the key code in the
event is present in the set of codes that it is tracking, updates the object.

function trackKeys(keys) {

 let down = Object.create(null);
 function track(event) {
 if (keys.includes(event.key)) {

 down[event.key] = event.type == "keydown";

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 21/28

 event.preventDefault();
 }

 }
 window.addEventListener("keydown", track);
 window.addEventListener("keyup", track);
 return down;

}

const arrowKeys =

 trackKeys(["ArrowLeft", "ArrowRight", "ArrowUp"]);

The same handler function is used for both event types. It looks at the event
object’s type property to determine whether the key state should be updated
to true ("keydown") or false ("keyup").

Running the game

The requestAnimationFrame function, which we saw in Chapter 14, provides
a good way to animate a game. But its interface is quite primitive—using it
requires us to track the time at which our function was called the last time
around and call requestAnimationFrame again after every frame.

Let’s define a helper function that wraps all that in a convenient interface and
allows us to simply call runAnimation , giving it a function that expects a time
difference as an argument and draws a single frame. When the frame function
returns the value false , the animation stops.

function runAnimation(frameFunc) {

 let lastTime = null;
 function frame(time) {
 if (lastTime != null) {

 let timeStep = Math.min(time - lastTime, 100) / 1000;
 if (frameFunc(timeStep) === false) return;
 }
 lastTime = time;

 requestAnimationFrame(frame);
 }
 requestAnimationFrame(frame);

}

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 22/28

https://eloquentjavascript.net/14_dom.html#animationFrame

I have set a maximum frame step of 100 milliseconds (one-tenth of a second).
When the browser tab or window with our page is hidden,
requestAnimationFrame calls will be suspended until the tab or window is
shown again. In this case, the difference between lastTime and time will be
the entire time in which the page was hidden. Advancing the game by that
much in a single step would look silly and might cause weird side effects, such
as the player falling through the floor.

The function also converts the time steps to seconds, which are an easier
quantity to think about than milliseconds.

The runLevel function takes a Level object and a display constructor and
returns a promise. It displays the level (in document.body) and lets the user
play through it. When the level is finished (lost or won), runLevel waits one
more second (to let the user see what happens) and then clears the display,
stops the animation, and resolves the promise to the game’s end status.

function runLevel(level, Display) {
 let display = new Display(document.body, level);

 let state = State.start(level);
 let ending = 1;
 return new Promise(resolve => {
 runAnimation(time => {

 state = state.update(time, arrowKeys);
 display.syncState(state);
 if (state.status == "playing") {

 return true;
 } else if (ending > 0) {
 ending -= time;

 return true;
 } else {
 display.clear();
 resolve(state.status);

 return false;
 }
 });

 });
}

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 23/28

A game is a sequence of levels. Whenever the player dies, the current level is
restarted. When a level is completed, we move on to the next level. This can
be expressed by the following function, which takes an array of level plans
(strings) and a display constructor:

async function runGame(plans, Display) {
 for (let level = 0; level < plans.length;) {

 let status = await runLevel(new Level(plans[level]),
 Display);
 if (status == "won") level++;
 }

 console.log("You've won!");
}

Because we made runLevel return a promise, runGame can be written using
an async function, as shown in Chapter 11. It returns another promise, which
resolves when the player finishes the game.

There is a set of level plans available in the GAME_LEVELS binding in this
chapter’s sandbox. This page feeds them to runGame , starting an actual game.

<link rel="stylesheet" href="css/game.css">

<body>
 <script>

 runGame(GAME_LEVELS, DOMDisplay);
 </script>
</body>

See if you can beat those. I had fun building them.

Exercises

Game over

It’s traditional for platform games to have the player start with a limited
number of lives and subtract one life each time they die. When the player is
out of lives, the game restarts from the beginning.

Adjust runGame to implement lives. Have the player start with three. Output
the current number of lives (using console.log) every time a level starts.

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 24/28

https://eloquentjavascript.net/11_async.html
https://eloquentjavascript.net/code#16
https://eloquentjavascript.net/code#16

<link rel="stylesheet" href="css/game.css">

<body>
<script>
 // The old runGame function. Modify it...
 async function runGame(plans, Display) {

 for (let level = 0; level < plans.length;) {
 let status = await runLevel(new Level(plans[level]),
 Display);

 if (status == "won") level++;
 }
 console.log("You've won!");

 }
 runGame(GAME_LEVELS, DOMDisplay);
</script>
</body>

Pausing the game

Make it possible to pause (suspend) and unpause the game by pressing the
��� key. You can do this by changing the runLevel function to set up a
keyboard event handler that interrupts or resumes the animation whenever
the ��� key is hit.

The runAnimation interface may not look like it is suitable for this at first
glance, but it is if you rearrange the way runLevel calls it.

When you have that working, there’s something else you can try. The way
we’ve been registering keyboard event handlers is somewhat problematic. The
arrowKeys object is currently a global binding, and its event handlers are
kept around even when no game is running. You could say they leak out of
our system. Extend trackKeys to provide a way to unregister its handlers,
then change runLevel to register its handlers when it starts and unregister
them again when it is finished.

<link rel="stylesheet" href="css/game.css">

<body>

<script>
 // The old runLevel function. Modify this...
 function runLevel(level, Display) {

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 25/28

 let display = new Display(document.body, level);
 let state = State.start(level);

 let ending = 1;
 return new Promise(resolve => {
 runAnimation(time => {
 state = state.update(time, arrowKeys);

 display.syncState(state);
 if (state.status == "playing") {
 return true;

 } else if (ending > 0) {
 ending -= time;
 return true;

 } else {
 display.clear();
 resolve(state.status);
 return false;

 }
 });
 });

 }
 runGame(GAME_LEVELS, DOMDisplay);
</script>

</body>

Display hints...

A monster

It is traditional for platform games to have enemies that you can defeat by
jumping on top of them. This exercise asks you to add such an actor type to
the game.

We’ll call this actor a monster. Monsters move only horizontally. You can
make them move in the direction of the player, bounce back and forth like
horizontal lava, or have any other movement pattern you want. The class
doesn’t have to handle falling, but it should make sure the monster doesn’t
walk through walls.

When a monster touches the player, the effect depends on whether the player
is jumping on top of them or not. You can approximate this by checking
whether the player’s bottom is near the monster’s top. If this is the case, the
monster disappears. If not, the game is lost.

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 26/28

<link rel="stylesheet" href="css/game.css">
<style>.monster { background: purple }</style>

<body>
 <script>
 // Complete the constructor, update, and collide methods

 class Monster {
 constructor(pos, /* ... */) {}

 get type() { return "monster"; }

 static create(pos) {

 return new Monster(pos.plus(new Vec(0, -1)));
 }

 update(time, state) {}

 collide(state) {}
 }

 Monster.prototype.size = new Vec(1.2, 2);

 levelChars["M"] = Monster;

 runLevel(new Level(`
..................................

.################################.

.#..............................#.

.#..............................#.

.#..............................#.

.#...........................o..#.

.#..@...........................#.

.##########..............########.

..........#..o..o..o..o..#........

..........#...........M..#........

..........################........

..................................
`), DOMDisplay);
 </script>

</body>

Display hints...

27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 27/28

◂ ● ▸ ?
27/06/2024, 18:47 Project: A Platform Game :: Eloquent JavaScript

https://eloquentjavascript.net/16_game.html 28/28

https://eloquentjavascript.net/15_event.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/17_canvas.html

