
◂ ● ▸ ?
Handling Events

Some programs work with direct user input, such as mouse and keyboard
actions. That kind of input isn’t available ahead of time, as a well-organized
data structure—it comes in piece by piece, in real time, and the program must
respond to it as it happens.

Event handlers

Imagine an interface where the only way to find out whether a key on the
keyboard is being pressed was to read the current state of that key. To be able
to react to keypresses, you would have to constantly read the key’s state to
catch it before it was released again. It would be dangerous to perform other
time-intensive computations, since you might miss a keypress.

Some primitive machines handle input like this. A step up from this is for the
hardware or operating system to notice the keypress and put it in a queue. A

You have power over your mind—not outside events. Realize this, and you will find
strength.”

“

Marcus Aurelius, Meditations—

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 1/21

https://eloquentjavascript.net/14_dom.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/16_game.html

program can then periodically check the queue for new events and react to
what it finds there.

Of course, the program has to remember to look at the queue, and to do it
often, because any time between the key being pressed and the program
noticing the event will cause the software to feel unresponsive. This approach
is called polling. Most programmers prefer to avoid it.

A better mechanism is for the system to actively notify the code when an event
occurs. Browsers do this by allowing us to register functions as handlers for
specific events.

<p>Click this document to activate the handler.</p>
<script>

 window.addEventListener("click", () => {
 console.log("You knocked?");
 });
</script>

The window binding refers to a built-in object provided by the browser. It
represents the browser window that contains the document. Calling its
addEventListener method registers the second argument to be called
whenever the event described by its first argument occurs.

Events and DOM nodes

Each browser event handler is registered in a context. In the previous
example, we called addEventListener on the window object to register a
handler for the whole window. Such a method can also be found on DOM
elements and some other types of objects. Event listeners are called only when
the event happens in the context of the object on which they are registered.

<button>Click me</button>
<p>No handler here.</p>

<script>
 let button = document.querySelector("button");
 button.addEventListener("click", () => {

 console.log("Button clicked.");
 });
</script>

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 2/21

That example attaches a handler to the button node. Clicks on the button
cause that handler to run, but clicks on the rest of the document do not.

Giving a node an onclick attribute has a similar effect. This works for most
types of events—you can attach a handler through the attribute whose name is
the event name with on in front of it.

But a node can have only one onclick attribute, so you can register only one
handler per node that way. The addEventListener method allows you to add
any number of handlers meaning it’s safe to add handlers even if there is
already another handler on the element.

The removeEventListener method, called with arguments similar to
addEventListener , removes a handler.

<button>Act-once button</button>
<script>

 let button = document.querySelector("button");
 function once() {
 console.log("Done.");
 button.removeEventListener("click", once);

 }
 button.addEventListener("click", once);
</script>

The function given to removeEventListener has to be the same function
value given to addEventListener . When you need to unregister a handler,
you’ll want to give the handler function a name (once , in the example) to be
able to pass the same function value to both methods.

Event objects

Though we have ignored it so far, event handler functions are passed an
argument: the event object. This object holds additional information about
the event. For example, if we want to know which mouse button was pressed,
we can look at the event object’s button property.

<button>Click me any way you want</button>
<script>

 let button = document.querySelector("button");

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 3/21

 button.addEventListener("mousedown", event => {
 if (event.button == 0) {

 console.log("Left button");
 } else if (event.button == 1) {
 console.log("Middle button");
 } else if (event.button == 2) {

 console.log("Right button");
 }
 });

</script>

The information stored in an event object differs per type of event. (We’ll
discuss different types later in the chapter.) The object’s type property
always holds a string identifying the event (such as "click" or
"mousedown").

Propagation

For most event types, handlers registered on nodes with children will also
receive events that happen in the children. If a button inside a paragraph is
clicked, event handlers on the paragraph will also see the click event.

But if both the paragraph and the button have a handler, the more specific
handler—the one on the button—gets to go first. The event is said to
propagate outward from the node where it happened to that node’s parent
node and on to the root of the document. Finally, after all handlers registered
on a specific node have had their turn, handlers registered on the whole
window get a chance to respond to the event.

At any point, an event handler can call the stopPropagation method on the
event object to prevent handlers further up from receiving the event. This can
be useful when, for example, you have a button inside another clickable
element and you don’t want clicks on the button to activate the outer
element’s click behavior.

The following example registers "mousedown" handlers on both a button and
the paragraph around it. When clicked with the right mouse button, the
handler for the button calls stopPropagation , which will prevent the

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 4/21

handler on the paragraph from running. When the button is clicked with
another mouse button, both handlers will run.

<p>A paragraph with a <button>button</button>.</p>
<script>

 let para = document.querySelector("p");
 let button = document.querySelector("button");
 para.addEventListener("mousedown", () => {
 console.log("Handler for paragraph.");

 });
 button.addEventListener("mousedown", event => {
 console.log("Handler for button.");

 if (event.button == 2) event.stopPropagation();
 });
</script>

Most event objects have a target property that refers to the node where they
originated. You can use this property to ensure that you’re not accidentally
handling something that propagated up from a node you do not want to
handle.

It is also possible to use the target property to cast a wide net for a specific
type of event. For example, if you have a node containing a long list of
buttons, it may be more convenient to register a single click handler on the
outer node and have it use the target property to figure out whether a
button was clicked, rather than registering individual handlers on all of the
buttons.

<button>A</button>
<button>B</button>
<button>C</button>
<script>

 document.body.addEventListener("click", event => {
 if (event.target.nodeName == "BUTTON") {
 console.log("Clicked", event.target.textContent);

 }
 });
</script>

Default actions

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 5/21

Many events have a default action. If you click a link, you will be taken to the
link’s target. If you press the down arrow, the browser will scroll the page
down. If you right-click, you’ll get a context menu. And so on.

For most types of events, the JavaScript event handlers are called before the
default behavior takes place. If the handler doesn’t want this normal behavior
to happen, typically because it has already taken care of handling the event, it
can call the preventDefault method on the event object.

This can be used to implement your own keyboard shortcuts or context menu.
It can also be used to obnoxiously interfere with the behavior that users
expect. For example, here is a link that cannot be followed:

MDN
<script>

 let link = document.querySelector("a");
 link.addEventListener("click", event => {
 console.log("Nope.");
 event.preventDefault();

 });
</script>

Try not to do such things without a really good reason. It’ll be unpleasant for
people who use your page when expected behavior is broken.

Depending on the browser, some events can’t be intercepted at all. On
Chrome, for example, the keyboard shortcut to close the current tab (����-W
or �������-W) cannot be handled by JavaScript.

Key events

When a key on the keyboard is pressed, your browser fires a "keydown"
event. When it is released, you get a "keyup" event.

<p>This page turns violet when you hold the V key.</p>
<script>
 window.addEventListener("keydown", event => {

 if (event.key == "v") {
 document.body.style.background = "violet";
 }

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 6/21

 });
 window.addEventListener("keyup", event => {

 if (event.key == "v") {
 document.body.style.background = "";
 }
 });

</script>

Despite its name, "keydown" fires not only when the key is physically pushed
down. When a key is pressed and held, the event fires again every time the key
repeats. Sometimes you have to be careful about this. For example, if you add
a button to the DOM when a key is pressed and remove it again when the key
is released, you might accidentally add hundreds of buttons when the key is
held down longer.

The previous example looks at the key property of the event object to see
which key the event is about. This property holds a string that, for most keys,
corresponds to the thing that pressing that key would type. For special keys
such as �����, it holds a string that names the key ("Enter" , in this case). If
you hold ����� while pressing a key, that might also influence the name of the
key—"v" becomes "V" , and "1" may become "!" , if that is what pressing
�����-1 produces on your keyboard.

Modifier keys such as �����, ����, ���, and ���� (������� on Mac) generate
key events just like normal keys. When looking for key combinations, you can
also find out whether these keys are held down by looking at the shiftKey ,
ctrlKey , altKey , and metaKey properties of keyboard and mouse events.

<p>Press Control-Space to continue.</p>
<script>

 window.addEventListener("keydown", event => {
 if (event.key == " " && event.ctrlKey) {
 console.log("Continuing!");

 }
 });
</script>

The DOM node where a key event originates depends on the element that has
focus when the key is pressed. Most nodes cannot have focus unless you give
them a tabindex attribute, but things like links, buttons, and form fields can.

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 7/21

We’ll come back to form fields in Chapter 18. When nothing in particular has
focus, document.body acts as the target node of key events.

When the user is typing text, using key events to figure out what is being
typed is problematic. Some platforms, most notably the virtual keyboard on
Android phones, don’t fire key events. But even when you have an old-
fashioned keyboard, some types of text input don’t match key presses in a
straightforward way, such as input method editor (IME) software used by
people whose scripts don’t fit on a keyboard, where multiple key strokes are
combined to create characters.

To notice when something was typed, elements that you can type into, such as
the <input> and <textarea> tags, fire "input" events whenever the user
changes their content. To get the actual content that was typed, it is best to
directly read it from the focused field, which we discuss in Chapter 18.

Pointer events

There are currently two widely used ways to point at things on a screen: mice
(including devices that act like mice, such as touchpads and trackballs) and
touchscreens. These produce different kinds of events.

Mouse clicks

Pressing a mouse button causes a number of events to fire. The "mousedown"
and "mouseup" events are similar to "keydown" and "keyup" and fire when
the button is pressed and released. These happen on the DOM nodes that are
immediately below the mouse pointer when the event occurs.

After the "mouseup" event, a "click" event fires on the most specific node
that contained both the press and the release of the button. For example, if I
press down the mouse button on one paragraph and then move the pointer to
another paragraph and release the button, the "click" event will happen on
the element that contains both those paragraphs.

If two clicks happen close together, a "dblclick" (double-click) event also
fires, after the second click event.

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 8/21

https://eloquentjavascript.net/18_http.html#forms
https://eloquentjavascript.net/18_http.html#forms

To get precise information about the place where a mouse event happened,
you can look at its clientX and clientY properties, which contain the
event’s coordinates (in pixels) relative to the top-left corner of the window, or
pageX and pageY , which are relative to the top-left corner of the whole
document (which may be different when the window has been scrolled).

The following program implements a primitive drawing application. Every
time you click the document, it adds a dot under your mouse pointer.

<style>
 body {

 height: 200px;
 background: beige;
 }
 .dot {

 height: 8px; width: 8px;
 border-radius: 4px; /* rounds corners */
 background: teal;

 position: absolute;
 }
</style>

<script>
 window.addEventListener("click", event => {
 let dot = document.createElement("div");
 dot.className = "dot";

 dot.style.left = (event.pageX - 4) + "px";
 dot.style.top = (event.pageY - 4) + "px";
 document.body.appendChild(dot);

 });
</script>

We’ll create a less primitive drawing application in Chapter 19.

Mouse motion

Every time the mouse pointer moves, a "mousemove" event fires. This event
can be used to track the position of the mouse. A common situation in which
this is useful is when implementing some form of mouse-dragging
functionality.

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 9/21

https://eloquentjavascript.net/19_paint.html

As an example, the following program displays a bar and sets up event
handlers so that dragging to the left or right on this bar makes it narrower or
wider:

<p>Drag the bar to change its width:</p>
<div style="background: orange; width: 60px; height: 20px">

</div>
<script>
 let lastX; // Tracks the last observed mouse X position
 let bar = document.querySelector("div");

 bar.addEventListener("mousedown", event => {
 if (event.button == 0) {
 lastX = event.clientX;

 window.addEventListener("mousemove", moved);
 event.preventDefault(); // Prevent selection
 }

 });

 function moved(event) {
 if (event.buttons == 0) {

 window.removeEventListener("mousemove", moved);
 } else {
 let dist = event.clientX - lastX;

 let newWidth = Math.max(10, bar.offsetWidth + dist);
 bar.style.width = newWidth + "px";
 lastX = event.clientX;

 }
 }
</script>

Note that the "mousemove" handler is registered on the whole window. Even
if the mouse goes outside of the bar during resizing, as long as the button is
held, we still want to update its size.

We must stop resizing the bar when the mouse button is released. For that, we
can use the buttons property (note the plural), which tells us about the
buttons that are currently held down. When it is zero, no buttons are down.
When buttons are held, the value of the buttons property is the sum of the
codes for those buttons—the left button has code 1, the right button 2, and the
middle one 4. With the left and right buttons held, for example, the value of
buttons will be 3.

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 10/21

Note that the order of these codes is different from the one used by button ,
where the middle button came before the right one. As mentioned,
consistency isn’t a strong point of the browser’s programming interface.

Touch events

The style of graphical browser that we use was designed with mouse
interfaces in mind, at a time where touchscreens were rare. To make the web
“work” on early touchscreen phones, browsers for those devices pretended, to
a certain extent, that touch events were mouse events. If you tap your screen,
you’ll get "mousedown" , "mouseup" , and "click" events.

But this illusion isn’t very robust. A touchscreen doesn’t work like a mouse: it
doesn’t have multiple buttons, you can’t track the finger when it isn’t on the
screen (to simulate "mousemove"), and it allows multiple fingers to be on the
screen at the same time.

Mouse events cover touch interaction only in straightforward cases—if you
add a "click" handler to a button, touch users will still be able to use it. But
something like the resizeable bar in the previous example does not work on a
touchscreen.

There are specific event types fired by touch interaction. When a finger starts
touching the screen, you get a "touchstart" event. When it is moved while
touching, "touchmove" events fire. Finally, when it stops touching the screen,
you’ll see a "touchend" event.

Because many touchscreens can detect multiple fingers at the same time,
these events don’t have a single set of coordinates associated with them.
Rather, their event objects have a touches property, which holds an array-
like object of points, each of which has its own clientX , clientY , pageX ,
and pageY properties.

You could do something like this to show red circles around every touching
finger:

<style>
 dot { position: absolute; display: block;

 border: 2px solid red; border-radius: 50px;

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 11/21

 height: 100px; width: 100px; }
</style>

<p>Touch this page</p>
<script>
 function update(event) {
 for (let dot; dot = document.querySelector("dot");) {

 dot.remove();
 }
 for (let i = 0; i < event.touches.length; i++) {

 let {pageX, pageY} = event.touches[i];
 let dot = document.createElement("dot");
 dot.style.left = (pageX - 50) + "px";

 dot.style.top = (pageY - 50) + "px";
 document.body.appendChild(dot);
 }
 }

 window.addEventListener("touchstart", update);
 window.addEventListener("touchmove", update);
 window.addEventListener("touchend", update);

</script>

You’ll often want to call preventDefault in touch event handlers to override
the browser’s default behavior (which may include scrolling the page on
swiping) and to prevent the mouse events from being fired, for which you may
also have a handler.

Scroll events

Whenever an element is scrolled, a "scroll" event is fired on it. This has
various uses, such as knowing what the user is currently looking at (for
disabling off-screen animations or sending spy reports to your evil
headquarters) or showing some indication of progress (by highlighting part of
a table of contents or showing a page number).

The following example draws a progress bar above the document and updates
it to fill up as you scroll down:

<style>

 #progress {
 border-bottom: 2px solid blue;
 width: 0;

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 12/21

 position: fixed;
 top: 0; left: 0;

 }
</style>
<div id="progress"></div>
<script>

 // Create some content
 document.body.appendChild(document.createTextNode(
 "supercalifragilisticexpialidocious ".repeat(1000)));

 let bar = document.querySelector("#progress");
 window.addEventListener("scroll", () => {

 let max = document.body.scrollHeight - innerHeight;
 bar.style.width = `${(pageYOffset / max) * 100}%`;
 });
</script>

Giving an element a position of fixed acts much like an absolute position
but also prevents it from scrolling along with the rest of the document. The
effect is to make our progress bar stay at the top. Its width is changed to
indicate the current progress. We use % , rather than px , as a unit when
setting the width so that the element is sized relative to the page width.

The global innerHeight binding gives us the height of the window, which we
must subtract from the total scrollable height—you can’t keep scrolling when
you hit the bottom of the document. There’s also an innerWidth for the
window width. By dividing pageYOffset , the current scroll position, by the
maximum scroll position and multiplying by 100, we get the percentage for
the progress bar.

Calling preventDefault on a scroll event does not prevent the scrolling from
happening. In fact, the event handler is called only after the scrolling takes
place.

Focus events

When an element gains focus, the browser fires a "focus" event on it. When
it loses focus, the element gets a "blur" event.

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 13/21

Unlike the events discussed earlier, these two events do not propagate. A
handler on a parent element is not notified when a child element gains or
loses focus.

The following example displays help text for the text field that currently has
focus:

<p>Name: <input type="text" data-help="Your full name"></p>
<p>Age: <input type="text" data-help="Your age in years"></p>

<p id="help"></p>

<script>
 let help = document.querySelector("#help");

 let fields = document.querySelectorAll("input");
 for (let field of Array.from(fields)) {
 field.addEventListener("focus", event => {

 let text = event.target.getAttribute("data-help");
 help.textContent = text;
 });

 field.addEventListener("blur", event => {
 help.textContent = "";
 });
 }

</script>

The window object will receive "focus" and "blur" events when the user
moves from or to the browser tab or window in which the document is shown.

Load event

When a page finishes loading, the "load" event fires on the window and the
document body objects. This is often used to schedule initialization actions
that require the whole document to have been built. Remember that the
content of <script> tags is run immediately when the tag is encountered.
This may be too soon, for example when the script needs to do something
with parts of the document that appear after the <script> tag.

Elements such as images and script tags that load an external file also have a
"load" event that indicates the files they reference were loaded. Like the
focus-related events, loading events do not propagate.

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 14/21

When you close page or navigate away from it (for example, by following a
link), a "beforeunload" event fires. The main use of this event is to prevent
the user from accidentally losing work by closing a document. If you prevent
the default behavior on this event and set the returnValue property on the
event object to a string, the browser will show the user a dialog asking if they
really want to leave the page. That dialog might include your string, but
because some malicious sites try to use these dialogs to confuse people into
staying on their page to look at dodgy weight loss ads, most browsers no
longer display them.

Events and the event loop

In the context of the event loop, as discussed in Chapter 11, browser event
handlers behave like other asynchronous notifications. They are scheduled
when the event occurs but must wait for other scripts that are running to
finish before they get a chance to run.

The fact that events can be processed only when nothing else is running
means that if the event loop is tied up with other work, any interaction with
the page (which happens through events) will be delayed until there’s time to
process it. So if you schedule too much work, either with long-running event
handlers or with lots of short-running ones, the page will become slow and
cumbersome to use.

For cases where you really do want to do some time-consuming thing in the
background without freezing the page, browsers provide something called
web workers. A worker is a JavaScript process that runs alongside the main
script, on its own timeline.

Imagine that squaring a number is a heavy, long-running computation that
we want to perform in a separate thread. We could write a file called code/
squareworker.js that responds to messages by computing a square and
sending a message back.

addEventListener("message", event => {

 postMessage(event.data * event.data);
});

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 15/21

https://eloquentjavascript.net/11_async.html

To avoid the problems of having multiple threads touching the same data,
workers do not share their global scope or any other data with the main
script’s environment. Instead, you have to communicate with them by
sending messages back and forth.

This code spawns a worker running that script, sends it a few messages, and
outputs the responses.

let squareWorker = new Worker("code/squareworker.js");
squareWorker.addEventListener("message", event => {

 console.log("The worker responded:", event.data);
});
squareWorker.postMessage(10);
squareWorker.postMessage(24);

The postMessage function sends a message, which will cause a "message"
event to fire in the receiver. The script that created the worker sends and
receives messages through the Worker object, whereas the worker talks to the
script that created it by sending and listening directly on its global scope. Only
values that can be represented as JSON can be sent as messages—the other
side will receive a copy of them, rather than the value itself.

Timers

The setTimeout function we saw in Chapter 11 schedules another function to
be called later, after a given number of milliseconds. Sometimes you need to
cancel a function you have scheduled. You can do this by storing the value
returned by setTimeout and calling clearTimeout on it.

let bombTimer = setTimeout(() => {
 console.log("BOOM!");

}, 500);

if (Math.random() < 0.5) { // 50% chance

 console.log("Defused.");
 clearTimeout(bombTimer);
}

The cancelAnimationFrame function works in the same way as
clearTimeout . Calling it on a value returned by requestAnimationFrame

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 16/21

https://eloquentjavascript.net/11_async.html

will cancel that frame (assuming it hasn’t already been called).

A similar set of functions, setInterval and clearInterval , are used to set
timers that should repeat every X milliseconds.

let ticks = 0;
let clock = setInterval(() => {

 console.log("tick", ticks++);
 if (ticks == 10) {
 clearInterval(clock);
 console.log("stop.");

 }
}, 200);

Debouncing

Some types of events have the potential to fire rapidly many times in a row,
such as the "mousemove" and "scroll" events. When handling such events,
you must be careful not to do anything too time-consuming or your handler
will take up so much time that interaction with the document starts to feel
slow.

If you do need to do something nontrivial in such a handler, you can use
setTimeout to make sure you are not doing it too often. This is usually called
debouncing the event. There are several slightly different approaches to this.

For example, suppose we want to react when the user has typed something,
but we don’t want to do it immediately for every input event. When they are
typing quickly, we just want to wait until a pause occurs. Instead of
immediately performing an action in the event handler, we set a timeout. We
also clear the previous timeout (if any) so that when events occur close
together (closer than our timeout delay), the timeout from the previous event
will be canceled.

<textarea>Type something here...</textarea>
<script>
 let textarea = document.querySelector("textarea");

 let timeout;
 textarea.addEventListener("input", () => {
 clearTimeout(timeout);

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 17/21

 timeout = setTimeout(() => console.log("Typed!"), 500);
 });

</script>

Giving an undefined value to clearTimeout or calling it on a timeout that has
already fired has no effect. Thus, we don’t have to be careful about when to
call it, and we simply do so for every event.

We can use a slightly different pattern if we want to space responses so that
they’re separated by at least a certain length of time but want to fire them
during a series of events, not just afterward. For example, we might want to
respond to "mousemove" events by showing the current coordinates of the
mouse, but only every 250 milliseconds.

<script>
 let scheduled = null;
 window.addEventListener("mousemove", event => {

 if (!scheduled) {
 setTimeout(() => {
 document.body.textContent =

 `Mouse at ${scheduled.pageX}, ${scheduled.pageY}`;
 scheduled = null;
 }, 250);

 }
 scheduled = event;
 });
</script>

Summary

Event handlers make it possible to detect and react to events happening in
our web page. The addEventListener method is used to register such a
handler.

Each event has a type ("keydown" , "focus" , and so on) that identifies it.
Most events are called on a specific DOM element and then propagate to that
element’s ancestors, allowing handlers associated with those elements to
handle them.

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 18/21

When an event handler is called, it’s passed an event object with additional
information about the event. This object also has methods that allow us to
stop further propagation (stopPropagation) and prevent the browser’s
default handling of the event (preventDefault).

Pressing a key fires "keydown" and "keyup" events. Pressing a mouse button
fires "mousedown" , "mouseup" , and "click" events. Moving the mouse fires
"mousemove" events. Touchscreen interaction will result in "touchstart" ,
"touchmove" , and "touchend" events.

Scrolling can be detected with the "scroll" event, and focus changes can be
detected with the "focus" and "blur" events. When the document finishes
loading, a "load" event fires on the window.

Exercises

Balloon

Write a page that displays a balloon (using the balloon emoji, 🎈). When you
press the up arrow, it should inflate (grow) 10 percent. When you press the
down arrow, it should deflate (shrink) 10 percent.

You can control the size of text (emoji are text) by setting the font-size CSS
property (style.fontSize) on its parent element. Remember to include a
unit in the value—for example, pixels (10px).

The key names of the arrow keys are "ArrowUp" and "ArrowDown" . Make
sure the keys change only the balloon, without scrolling the page.

Once you have that working, add a feature where if you blow up the balloon
past a certain size, it “explodes”. In this case, exploding means that it is
replaced with an 💥 emoji, and the event handler is removed (so that you
can’t inflate or deflate the explosion).

<p>🎈</p>

<script>
 // Your code here

</script>

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 19/21

Display hints...

Mouse trail

In JavaScript’s early days, which was the high time of gaudy home pages with
lots of animated images, people came up with some truly inspiring ways to
use the language. One of these was the mouse trail—a series of elements that
would follow the mouse pointer as you moved it across the page.

In this exercise, I want you to implement a mouse trail. Use absolutely
positioned <div> elements with a fixed size and background color (refer to
the code in the “Mouse Clicks” section for an example). Create a bunch of
these elements and, when the mouse moves, display them in the wake of the
mouse pointer.

There are various possible approaches here. You can make your trail as simple
or as complex as you want. A simple solution to start with is to keep a fixed
number of trail elements and cycle through them, moving the next one to the
mouse’s current position every time a "mousemove" event occurs.

<style>
 .trail { /* className for the trail elements */

 position: absolute;
 height: 6px; width: 6px;
 border-radius: 3px;
 background: teal;

 }
 body {
 height: 300px;

 }
</style>

<script>
 // Your code here.
</script>

Display hints...

Tabs

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 20/21

Tabbed panels are common in user interfaces. They allow you to select an
interface panel by choosing from a number of tabs “sticking out” above an
element.

Implement a simple tabbed interface. Write a function, asTabs , that takes a
DOM node and creates a tabbed interface showing the child elements of that
node. It should insert a list of <button> elements at the top of the node, one
for each child element, containing text retrieved from the data-tabname
attribute of the child. All but one of the original children should be hidden
(given a display style of none). The currently visible node can be selected by
clicking the buttons.

When that works, extend it to style the button for the currently selected tab
differently so that it is obvious which tab is selected.

<tab-panel>
 <div data-tabname="one">Tab one</div>

 <div data-tabname="two">Tab two</div>
 <div data-tabname="three">Tab three</div>
</tab-panel>
<script>

 function asTabs(node) {
 // Your code here.
 }

 asTabs(document.querySelector("tab-panel"));
</script>

Display hints...
◂ ● ▸ ?

27/06/2024, 18:47 Handling Events :: Eloquent JavaScript

https://eloquentjavascript.net/15_event.html 21/21

https://eloquentjavascript.net/14_dom.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/16_game.html

