
◂ ● ▸ ?
The Document Object Model

When you open a web page, your browser retrieves the page’s HTML text and
parses it, much like our parser from Chapter 12 parsed programs. The
browser builds up a model of the document’s structure and uses this model to
draw the page on the screen.

This representation of the document is one of the toys that a JavaScript
program has available in its sandbox. It is a data structure that you can read
or modify. It acts as a live data structure: when it’s modified, the page on the
screen is updated to reflect the changes.

Document structure

You can imagine an HTML document as a nested set of boxes. Tags such as
<body> and </body> enclose other tags, which in turn contain other tags or
text. Here’s the example document from the previous chapter:

Too bad! Same old story! Once you’ve finished building your house you notice you’ve
accidentally learned something that you really should have known—before you
started.”

“

Friedrich Nietzsche, Beyond Good and Evil—

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 1/23

https://eloquentjavascript.net/13_browser.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/15_event.html
https://eloquentjavascript.net/12_language.html#parsing
https://eloquentjavascript.net/13_browser.html

<!doctype html>
<html>

 <head>
 <title>My home page</title>
 </head>
 <body>

 <h1>My home page</h1>
 <p>Hello, I am Marijn and this is my home page.</p>
 <p>I also wrote a book! Read it

 here.</p>
 </body>
</html>

This page has the following structure:

here

a

.I also wrote a book! Read it

p

Hello, I am Marijn and this is...

p

My home page

h1

body

My home page

title

head

html

The data structure the browser uses to represent the document follows this
shape. For each box, there is an object, which we can interact with to find out
things such as what HTML tag it represents and which boxes and text it
contains. This representation is called the Document Object Model, or DOM
for short.

The global binding document gives us access to these objects. Its
documentElement property refers to the object representing the <html> tag.

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 2/23

Since every HTML document has a head and a body, it also has head and
body properties pointing at those elements.

Trees

Think back to the syntax trees from Chapter 12 for a moment. Their structures
are strikingly similar to the structure of a browser’s document. Each node
may refer to other nodes, children, which in turn may have their own
children. This shape is typical of nested structures where elements can
contain subelements that are similar to themselves.

We call a data structure a tree when it has a branching structure, no cycles (a
node may not contain itself, directly or indirectly), and a single, well-defined
root. In the case of the DOM, document.documentElement serves as the root.

Trees come up a lot in computer science. In addition to representing recursive
structures such as HTML documents or programs, they are often used to
maintain sorted sets of data because elements can usually be found or
inserted more efficiently in a tree than in a flat array.

A typical tree has different kinds of nodes. The syntax tree for the Egg
language had identifiers, values, and application nodes. Application nodes
may have children, whereas identifiers and values are leaves, or nodes
without children.

The same goes for the DOM. Nodes for elements, which represent HTML tags,
determine the structure of the document. These can have child nodes. An
example of such a node is document.body . Some of these children can be leaf
nodes, such as pieces of text or comment nodes.

Each DOM node object has a nodeType property, which contains a code
(number) that identifies the type of node. Elements have code 1, which is also
defined as the constant property Node.ELEMENT_NODE . Text nodes,
representing a section of text in the document, get code 3 (Node.TEXT_NODE).
Comments have code 8 (Node.COMMENT_NODE).

Another way to visualize our document tree is as follows:

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 3/23

https://eloquentjavascript.net/12_language.html#parsing
https://eloquentjavascript.net/12_language.html
https://eloquentjavascript.net/12_language.html

html head title My home page

body h1 My home page

p Hello! I am...

p I also wrote...

herea

.

The leaves are text nodes, and the arrows indicate parent-child relationships
between nodes.

The standard

Using cryptic numeric codes to represent node types is not a very JavaScript-
like thing to do. Later in this chapter, we’ll see that other parts of the DOM
interface also feel cumbersome and alien. This is because the DOM interface
wasn’t designed for JavaScript alone. Rather, it tries to be a language-neutral
interface that can be used in other systems as well—not just for HTML but
also for XML, which is a generic data format with an HTML-like syntax.

This is unfortunate. Standards are often useful. But in this case, the advantage
(cross-language consistency) isn’t all that compelling. Having an interface
that is properly integrated with the language you’re using will save you more
time than having a familiar interface across languages.

As an example of this poor integration, consider the childNodes property
that element nodes in the DOM have. This property holds an array-like object
with a length property and properties labeled by numbers to access the child
nodes. But it is an instance of the NodeList type, not a real array, so it does
not have methods such as slice and map .

Then there are issues that are simply caused by poor design. For example,
there is no way to create a new node and immediately add children or
attributes to it. Instead, you have to first create it and then add the children
and attributes one by one, using side effects. Code that interacts heavily with
the DOM tends to get long, repetitive, and ugly.

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 4/23

But these flaws aren’t fatal. Since JavaScript allows us to create our own
abstractions, it is possible to design improved ways to express the operations
we are performing. Many libraries intended for browser programming come
with such tools.

Moving through the tree

DOM nodes contain a wealth of links to other nearby nodes. The following
diagram illustrates these:

I also wrote a book! ...

p

Hello, I am Marijn...

p

My home page

h1

body

0

1

2

childNodes firstChild

lastChild

previousSibling

nextSibling

parentNode

Although the diagram shows only one link of each type, every node has a
parentNode property that points to the node it is part of, if any. Likewise,
every element node (node type 1) has a childNodes property that points to
an array-like object holding its children.

In theory, you could move anywhere in the tree using just these parent and
child links. But JavaScript also gives you access to a number of additional
convenience links. The firstChild and lastChild properties point to the
first and last child elements or have the value null for nodes without
children. Similarly, previousSibling and nextSibling point to adjacent
nodes, which are nodes with the same parent that appear immediately before
or after the node itself. For a first child, previousSibling will be null, and
for a last child, nextSibling will be null.

There’s also the children property, which is like childNodes but contains
only element (type 1) children, not other types of child nodes. This can be

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 5/23

useful when you aren’t interested in text nodes.

When dealing with a nested data structure like this one, recursive functions
are often useful. The following function scans a document for text nodes
containing a given string and returns true when it has found one:

function talksAbout(node, string) {
 if (node.nodeType == Node.ELEMENT_NODE) {

 for (let child of node.childNodes) {
 if (talksAbout(child, string)) {
 return true;
 }

 }
 return false;
 } else if (node.nodeType == Node.TEXT_NODE) {

 return node.nodeValue.indexOf(string) > -1;
 }
}

console.log(talksAbout(document.body, "book"));
// → true

The nodeValue property of a text node holds the string of text that it
represents.

Finding elements

Navigating these links among parents, children, and siblings is often useful.
But if we want to find a specific node in the document, reaching it by starting
at document.body and following a fixed path of properties is a bad idea.
Doing so bakes assumptions into our program about the precise structure of
the document—a structure you might want to change later. Another
complicating factor is that text nodes are created even for the whitespace
between nodes. The example document’s <body> tag has not just three
children (<h1> and two <p> elements), but seven: those three, plus the spaces
before, after, and between them.

If we want to get the href attribute of the link in that document, we don’t
want to say something like “Get the second child of the sixth child of the

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 6/23

document body”. It’d be better if we could say “Get the first link in the
document”. And we can.

let link = document.body.getElementsByTagName("a")[0];
console.log(link.href);

All element nodes have a getElementsByTagName method, which collects all
elements with the given tag name that are descendants (direct or indirect
children) of that node and returns them as an array-like object.

To find a specific single node, you can give it an id attribute and use
document.getElementById instead.

<p>My ostrich Gertrude:</p>
<p></p>

<script>

 let ostrich = document.getElementById("gertrude");
 console.log(ostrich.src);
</script>

A third, similar method is getElementsByClassName , which, like
getElementsByTagName , searches through the contents of an element node
and retrieves all elements that have the given string in their class attribute.

Changing the document

Almost everything about the DOM data structure can be changed. The shape
of the document tree can be modified by changing parent-child relationships.
Nodes have a remove method to remove them from their current parent
node. To add a child node to an element node, we can use appendChild ,
which puts it at the end of the list of children, or insertBefore , which
inserts the node given as the first argument before the node given as the
second argument.

<p>One</p>
<p>Two</p>

<p>Three</p>

<script>

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 7/23

 let paragraphs = document.body.getElementsByTagName("p");
 document.body.insertBefore(paragraphs[2], paragraphs[0]);

</script>

A node can exist in the document in only one place. Thus, inserting paragraph
Three in front of paragraph One will first remove it from the end of the
document and then insert it at the front, resulting in Three/One/Two. All
operations that insert a node somewhere will, as a side effect, cause it to be
removed from its current position (if it has one).

The replaceChild method is used to replace a child node with another one.
It takes as arguments two nodes: a new node and the node to be replaced. The
replaced node must be a child of the element the method is called on. Note
that both replaceChild and insertBefore expect the new node as their
first argument.

Creating nodes

Say we want to write a script that replaces all images (tags) in the
document with the text held in their alt attributes, which specifies an
alternative textual representation of the image. This involves not only
removing the images but adding a new text node to replace them.

<p>The in the

 .</p>

<p><button onclick="replaceImages()">Replace</button></p>

<script>
 function replaceImages() {
 let images = document.body.getElementsByTagName("img");

 for (let i = images.length - 1; i >= 0; i--) {
 let image = images[i];
 if (image.alt) {

 let text = document.createTextNode(image.alt);
 image.parentNode.replaceChild(text, image);
 }
 }

 }
</script>

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 8/23

Given a string, createTextNode gives us a text node that we can insert into
the document to make it show up on the screen.

The loop that goes over the images starts at the end of the list. This is
necessary because the node list returned by a method like
getElementsByTagName (or a property like childNodes) is live. That is, it is
updated as the document changes. If we started from the front, removing the
first image would cause the list to lose its first element so that the second time
the loop repeats, where i is 1, it would stop because the length of the
collection is now also 1.

If you want a solid collection of nodes, as opposed to a live one, you can
convert the collection to a real array by calling Array.from .

let arrayish = {0: "one", 1: "two", length: 2};
let array = Array.from(arrayish);

console.log(array.map(s => s.toUpperCase()));
// → ["ONE", "TWO"]

To create element nodes, you can use the document.createElement method.
This method takes a tag name and returns a new empty node of the given
type.

The following example defines a utility elt , which creates an element node
and treats the rest of its arguments as children to that node. This function is
then used to add an attribution to a quote.

<blockquote id="quote">
 No book can ever be finished. While working on it we learn

 just enough to find it immature the moment we turn away
 from it.
</blockquote>

<script>
 function elt(type, ...children) {

 let node = document.createElement(type);
 for (let child of children) {
 if (typeof child != "string") node.appendChild(child);
 else node.appendChild(document.createTextNode(child));

 }

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 9/23

 return node;
 }

 document.getElementById("quote").appendChild(
 elt("footer", "—",
 elt("strong", "Karl Popper"),

 ", preface to the second edition of ",
 elt("em", "The Open Society and Its Enemies"),
 ", 1950"));

</script>

Attributes

Some element attributes, such as href for links, can be accessed through a
property of the same name on the element’s DOM object. This is the case for
most commonly used standard attributes.

HTML allows you to set any attribute you want on nodes. This can be useful
because it allows you to store extra information in a document. To read or
change custom attributes, which aren’t available as regular object properties,
you have to use the getAttribute and setAttribute methods.

<p data-classified="secret">The launch code is 00000000.</p>

<p data-classified="unclassified">I have two feet.</p>

<script>

 let paras = document.body.getElementsByTagName("p");
 for (let para of Array.from(paras)) {
 if (para.getAttribute("data-classified") == "secret") {
 para.remove();

 }
 }
</script>

It is recommended to prefix the names of such made-up attributes with
data- to ensure they do not conflict with any other attributes.

There is a commonly used attribute, class , which is a keyword in the
JavaScript language. For historical reasons—some old JavaScript
implementations could not handle property names that matched keywords—
the property used to access this attribute is called className . You can also

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 10/23

access it under its real name, "class" with the getAttribute and
setAttribute methods.

Layout

You may have noticed that different types of elements are laid out differently.
Some, such as paragraphs (<p>) or headings (<h1>), take up the whole width
of the document and are rendered on separate lines. These are called block
elements. Others, such as links (<a>) or the element, are rendered
on the same line with their surrounding text. Such elements are called inline
elements.

For any given document, browsers are able to compute a layout, which gives
each element a size and position based on its type and content. This layout is
then used to actually draw the document.

The size and position of an element can be accessed from JavaScript. The
offsetWidth and offsetHeight properties give you the space the element
takes up in pixels. A pixel is the basic unit of measurement in the browser. It
traditionally corresponds to the smallest dot that the screen can draw, but on
modern displays, which can draw very small dots, that may no longer be the
case, and a browser pixel may span multiple display dots.

Similarly, clientWidth and clientHeight give you the size of the space
inside the element, ignoring border width.

<p style="border: 3px solid red">

 I'm boxed in
</p>

<script>
 let para = document.body.getElementsByTagName("p")[0];
 console.log("clientHeight:", para.clientHeight);
 // → 19
 console.log("offsetHeight:", para.offsetHeight);
 // → 25
</script>

The most effective way to find the precise position of an element on the screen
is the getBoundingClientRect method. It returns an object with top ,

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 11/23

bottom , left , and right properties, indicating the pixel positions of the
sides of the element relative to the top left of the screen. If you want pixel
positions relative to the whole document, you must add the current scroll
position, which you can find in the pageXOffset and pageYOffset bindings.

Laying out a document can be quite a lot of work. In the interest of speed,
browser engines do not immediately re-layout a document every time you
change it but wait as long as they can before doing so. When a JavaScript
program that changed the document finishes running, the browser will have
to compute a new layout to draw the changed document to the screen. When a
program asks for the position or size of something by reading properties such
as offsetHeight or calling getBoundingClientRect , providing that
information also requires computing a layout.

A program that repeatedly alternates between reading DOM layout
information and changing the DOM forces a lot of layout computations to
happen and will consequently run very slowly. The following code is an
example of this. It contains two different programs that build up a line of X
characters 2,000 pixels wide and measures the time each one takes.

<p></p>
<p></p>

<script>
 function time(name, action) {
 let start = Date.now(); // Current time in milliseconds

 action();
 console.log(name, "took", Date.now() - start, "ms");
 }

 time("naive", () => {
 let target = document.getElementById("one");

 while (target.offsetWidth < 2000) {
 target.appendChild(document.createTextNode("X"));
 }
 });

 // → naive took 32 ms

 time("clever", function() {

 let target = document.getElementById("two");

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 12/23

 target.appendChild(document.createTextNode("XXXXX"));
 let total = Math.ceil(2000 / (target.offsetWidth / 5));

 target.firstChild.nodeValue = "X".repeat(total);
 });
 // → clever took 1 ms
</script>

Styling

We have seen that different HTML elements are drawn differently. Some are
displayed as blocks, others inline. Some add styling— makes its
content bold, and <a> makes it blue and underlines it.

The way an tag shows an image or an <a> tag causes a link to be
followed when it is clicked is strongly tied to the element type. But we can
change the styling associated with an element, such as the text color or
underline. Here is an example that uses the style property:

<p>Normal link</p>
<p>Green link</p>

A style attribute may contain one or more declarations, which are a property
(such as color) followed by a colon and a value (such as green). When there
is more than one declaration, they must be separated by semicolons, as in
"color: red; border: none" .

A lot of aspects of the document can be influenced by styling. For example,
the display property controls whether an element is displayed as a block or
an inline element.

This text is displayed inline,
<strong style="display: block">as a block, and
<strong style="display: none">not at all.

The block tag will end up on its own line since block elements are not
displayed inline with the text around them. The last tag is not displayed at all
—display: none prevents an element from showing up on the screen. This
is a way to hide elements. It is often preferable to removing them from the
document entirely because it makes it easy to reveal them again later.

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 13/23

JavaScript code can directly manipulate the style of an element through the
element’s style property. This property holds an object that has properties
for all possible style properties. The values of these properties are strings,
which we can write to in order to change a particular aspect of the element’s
style.

<p id="para" style="color: purple">
 Nice text

</p>

<script>
 let para = document.getElementById("para");

 console.log(para.style.color);
 para.style.color = "magenta";
</script>

Some style property names contain hyphens, such as font-family . Because
such property names are awkward to work with in JavaScript (you’d have to
say style["font-family"]), the property names in the style object for
such properties have their hyphens removed and the letters after them
capitalized (style.fontFamily).

Cascading styles

The styling system for HTML is called CSS, for Cascading Style Sheets. A
style sheet is a set of rules for how to style elements in a document. It can be
given inside a <style> tag.

<style>
 strong {

 font-style: italic;
 color: gray;
 }

</style>
<p>Now strong text is italic and gray.</p>

The cascading in the name refers to the fact that multiple such rules are
combined to produce the final style for an element. In the example, the
default styling for tags, which gives them font-weight: bold , is
overlaid by the rule in the <style> tag, which adds font-style and color .

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 14/23

When multiple rules define a value for the same property, the most recently
read rule gets a higher precedence and wins. For example, if the rule in the
<style> tag included font-weight: normal , contradicting the default
font-weight rule, the text would be normal, not bold. Styles in a style
attribute applied directly to the node have the highest precedence and always
win.

It is possible to target things other than tag names in CSS rules. A rule for
.abc applies to all elements with "abc" in their class attribute. A rule for
#xyz applies to the element with an id attribute of "xyz" (which should be
unique within the document).

.subtle {
 color: gray;

 font-size: 80%;
}
#header {
 background: blue;

 color: white;
}
/* p elements with id main and with classes a and b */

p#main.a.b {
 margin-bottom: 20px;
}

The precedence rule favoring the most recently defined rule applies only when
the rules have the same specificity. A rule’s specificity is a measure of how
precisely it describes matching elements, determined by the number and kind
(tag, class, or ID) of element aspects it requires. For example, a rule that
targets p.a is more specific than rules that target p or just .a and would thus
take precedence over them.

The notation p > a {…} applies the given styles to all <a> tags that are direct
children of <p> tags. Similarly, p a {…} applies to all <a> tags inside <p>
tags, whether they are direct or indirect children.

Query selectors

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 15/23

We won’t be using style sheets very much in this book. Understanding them is
helpful when programming in the browser, but they are complicated enough
to warrant a separate book. The main reason I introduced selector syntax—
the notation used in style sheets to determine which elements a set of styles
apply to—is that we can use this same mini-language as an effective way to
find DOM elements.

The querySelectorAll method, which is defined both on the document
object and on element nodes, takes a selector string and returns a NodeList
containing all the elements that it matches.

<p>And if you go chasing
 rabbits</p>

<p>And you know you're going to fall</p>
<p>Tell 'em a hookah smoking
 caterpillar</p>
<p>Has given you the call</p>

<script>
 function count(selector) {

 return document.querySelectorAll(selector).length;
 }
 console.log(count("p")); // All <p> elements

 // → 4
 console.log(count(".animal")); // Class animal
 // → 2
 console.log(count("p .animal")); // Animal inside of <p>

 // → 2
 console.log(count("p > .animal")); // Direct child of <p>
 // → 1
</script>

Unlike methods such as getElementsByTagName , the object returned by
querySelectorAll is not live. It won’t change when you change the
document. It is still not a real array, though, so you need to call Array.from if
you want to treat it like one.

The querySelector method (without the All part) works in a similar way.
This one is useful if you want a specific single element. It will return only the
first matching element or null when no element matches.

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 16/23

Positioning and animating

The position style property influences layout in a powerful way. It has a
default value of static , meaning the element sits in its normal place in the
document. When it is set to relative , the element still takes up space in the
document, but now the top and left style properties can be used to move it
relative to that normal place. When position is set to absolute , the element
is removed from the normal document flow—that is, it no longer takes up
space and may overlap with other elements. Its top and left properties can
be used to absolutely position it relative to the top-left corner of the nearest
enclosing element whose position property isn’t static , or relative to the
document if no such enclosing element exists.

We can use this to create an animation. The following document displays a
picture of a cat that moves around in an ellipse:

<p style="text-align: center">

</p>
<script>

 let cat = document.querySelector("img");
 let angle = Math.PI / 2;
 function animate(time, lastTime) {
 if (lastTime != null) {

 angle += (time - lastTime) * 0.001;
 }
 cat.style.top = (Math.sin(angle) * 20) + "px";

 cat.style.left = (Math.cos(angle) * 200) + "px";
 requestAnimationFrame(newTime => animate(newTime, time));
 }

 requestAnimationFrame(animate);
</script>

Our picture is centered on the page and given a position of relative . We’ll
repeatedly update that picture’s top and left styles to move it.

The script uses requestAnimationFrame to schedule the animate function
to run whenever the browser is ready to repaint the screen. The animate
function itself again calls requestAnimationFrame to schedule the next
update. When the browser window (or tab) is active, this will cause updates to

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 17/23

happen at a rate of about 60 per second, which tends to produce a good-
looking animation.

If we just updated the DOM in a loop, the page would freeze, and nothing
would show up on the screen. Browsers do not update their display while a
JavaScript program is running, nor do they allow any interaction with the
page. This is why we need requestAnimationFrame—it lets the browser
know that we are done for now, and it can go ahead and do the things that
browsers do, such as updating the screen and responding to user actions.

The animation function is passed the current time as an argument. To ensure
that the motion of the cat per millisecond is stable, it bases the speed at which
the angle changes on the difference between the current time and the last
time the function ran. If it just moved the angle by a fixed amount per step,
the motion would stutter when, for example, another heavy task running on
the same computer prevented the function from running for a fraction of a
second.

Moving in circles is done using the trigonometry functions Math.cos and
Math.sin . For those who aren’t familiar with these, I’ll briefly introduce them
since we will occasionally use them in this book.

Math.cos and Math.sin are useful for finding points that lie on a circle
around point (0,0) with a radius of 1. Both functions interpret their argument
as the position on this circle, with 0 denoting the point on the far right of the
circle, going clockwise until 2π (about 6.28) has taken us around the whole
circle. Math.cos tells you the x-coordinate of the point that corresponds to
the given position, and Math.sin yields the y-coordinate. Positions (or
angles) greater than 2π or less than 0 are valid—the rotation repeats so that
a+2π refers to the same angle as a.

This unit for measuring angles is called radians—a full circle is 2π radians,
similar to how it is 360 degrees when measuring in degrees. The constant π is
available as Math.PI in JavaScript.

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 18/23

cos(¼π)

sin(¼π)

cos(-⅔π)

sin(-⅔π)sin(-⅔π)

The cat animation code keeps a counter, angle , for the current angle of the
animation and increments it every time the animate function is called. It can
then use this angle to compute the current position of the image element. The
top style is computed with Math.sin and multiplied by 20, which is the
vertical radius of our ellipse. The left style is based on Math.cos and
multiplied by 200 so that the ellipse is much wider than it is high.

Note that styles usually need units. In this case, we have to append "px" to
the number to tell the browser that we are counting in pixels (as opposed to
centimeters, “ems”, or other units). This is easy to forget. Using numbers
without units will result in your style being ignored—unless the number is 0,
which always means the same thing, regardless of its unit.

Summary

JavaScript programs may inspect and interfere with the document that the
browser is displaying through a data structure called the DOM. This data
structure represents the browser’s model of the document, and a JavaScript
program can modify it to change the visible document.

The DOM is organized like a tree, where elements are arranged hierarchically
according to the structure of the document. The objects representing elements
have properties such as parentNode and childNodes , which can be used to
navigate through this tree.

The way a document is displayed can be influenced by styling, both by
attaching styles to nodes directly and by defining rules that match certain
nodes. There are many different style properties, such as color or display .
JavaScript code can manipulate an element’s style directly through its style
property.

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 19/23

Exercises

Build a table

An HTML table is built with the following tag structure:

<table>

 <tr>
 <th>name</th>
 <th>height</th>

 <th>place</th>
 </tr>
 <tr>
 <td>Kilimanjaro</td>

 <td>5895</td>
 <td>Tanzania</td>
 </tr>

</table>

For each row, the <table> tag contains a <tr> tag. Inside of these <tr> tags,
we can put cell elements: either heading cells (<th>) or regular cells (<td>).

Given a dataset of mountains, an array of objects with name , height , and
place properties, generate the DOM structure for a table that enumerates the
objects. It has one column per key and one row per object, plus a header row
with <th> elements at the top, listing the column names.

Write this so that the columns are automatically derived from the objects, by
taking the property names of the first object in the data.

Show the resulting table in the document by appending it to the element that
has an id attribute of "mountains" .

Once you have this working, right-align cells that contain number values by
setting their style.textAlign property to "right" .

<h1>Mountains</h1>

<div id="mountains"></div>

<script>

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 20/23

 const MOUNTAINS = [
 {name: "Kilimanjaro", height: 5895, place: "Tanzania"},

 {name: "Everest", height: 8848, place: "Nepal"},
 {name: "Mount Fuji", height: 3776, place: "Japan"},
 {name: "Vaalserberg", height: 323, place: "Netherlands"},
 {name: "Denali", height: 6168, place: "United States"},

 {name: "Popocatepetl", height: 5465, place: "Mexico"},
 {name: "Mont Blanc", height: 4808, place: "Italy/France"}
];

 // Your code here
</script>

Display hints...

Elements by tag name

The document.getElementsByTagName method returns all child elements
with a given tag name. Implement your own version of this as a function that
takes a node and a string (the tag name) as arguments and returns an array
containing all descendant element nodes with the given tag name. Your
function should go through the document itself. It may not use a method like
querySelectorAll to do the work.

To find the tag name of an element, use its nodeName property. But note that
this will return the tag name in all uppercase. Use the toLowerCase or
toUpperCase string methods to compensate for this.

<h1>Heading with a span element.</h1>
<p>A paragraph with one, two
 spans.</p>

<script>
 function byTagName(node, tagName) {
 // Your code here.

 }

 console.log(byTagName(document.body, "h1").length);

 // → 1
 console.log(byTagName(document.body, "span").length);
 // → 3
 let para = document.querySelector("p");

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 21/23

 console.log(byTagName(para, "span").length);
 // → 2
</script>

Display hints...

The cat’s hat

Extend the cat animation defined earlier so that both the cat and his hat
() orbit at opposite sides of the ellipse.

Or make the hat circle around the cat. Or alter the animation in some other
interesting way.

To make positioning multiple objects easier, you’ll probably want to switch to
absolute positioning. This means that top and left are counted relative to
the top left of the document. To avoid using negative coordinates, which
would cause the image to move outside of the visible page, you can add a fixed
number of pixels to the position values.

<style>body { min-height: 200px }</style>

<script>
 let cat = document.querySelector("#cat");

 let hat = document.querySelector("#hat");

 let angle = 0;

 let lastTime = null;
 function animate(time) {
 if (lastTime != null) angle += (time - lastTime) * 0.001;
 lastTime = time;

 cat.style.top = (Math.sin(angle) * 40 + 40) + "px";
 cat.style.left = (Math.cos(angle) * 200 + 230) + "px";

 // Your extensions here.

 requestAnimationFrame(animate);

 }
 requestAnimationFrame(animate);
</script>

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 22/23

Display hints...
◂ ● ▸ ?

27/06/2024, 18:47 The Document Object Model :: Eloquent JavaScript

https://eloquentjavascript.net/14_dom.html 23/23

https://eloquentjavascript.net/13_browser.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/15_event.html

