
◂ ● ▸ ?
JavaScript and the Browser

The next chapters of this book will discuss web browsers. Without browsers,
there would be no JavaScript—or if there were, no one would ever have paid
any attention to it.

Web technology has been decentralized from the start, not just technically but
also in terms of the way it evolved. Various browser vendors have added new
functionality in ad hoc and sometimes poorly thought-out ways, which were
then—sometimes—adopted by others—and finally set down as in standards.

This is both a blessing and a curse. On the one hand, it is empowering to not
have a central party control a system but have it be improved by various
parties working in loose collaboration (or occasionally, open hostility). On the
other hand, the haphazard way in which the web was developed means that

The dream behind the web is of a common information space in which we
communicate by sharing information. Its universality is essential: the fact that a
hypertext link can point to anything, be it personal, local or global, be it draft or
highly polished.”

“

Tim Berners-Lee, The World Wide Web: A very short personal history—

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 1/10

https://eloquentjavascript.net/12_language.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/14_dom.html

the resulting system is not exactly a shining example of internal consistency.
Some parts of it are downright confusing and badly designed.

Networks and the Internet

Computer networks have been around since the 1950s. If you put cables
between two or more computers and allow them to send data back and forth
through these cables, you can do all kinds of wonderful things.

If connecting two machines in the same building allows us to do wonderful
things, connecting machines all over the planet should be even better. The
technology to start implementing this vision was developed in the 1980s, and
the resulting network is called the internet. It has lived up to its promise.

A computer can use this network to shoot bits at another computer. For any
effective communication to arise out of this bit-shooting, the computers on
both ends must know what the bits are supposed to represent. The meaning of
any given sequence of bits depends entirely on the kind of thing that it is
trying to express and on the encoding mechanism used.

A network protocol describes a style of communication over a network. There
are protocols for sending email, for fetching email, for sharing files, and even
for controlling computers that happen to be infected by malicious software.

The HyperText Transfer Protocol (HTTP) is a protocol for retrieving named
resources (chunks of information, such as web pages or pictures). It specifies
that the side making the request should start with a line like this, naming the
resource and the version of the protocol that it is trying to use:

GET /index.html HTTP/1.1

There are many more rules about the way the requester can include more
information in the request and the way the other side, which returns the
resource, packages up its content. We’ll look at HTTP in a little more detail in
Chapter 18.

Most protocols are built on top of other protocols. HTTP treats the network as
a streamlike device into which you can put bits and have them arrive at the
correct destination in the correct order. Providing those guarantees on top of

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 2/10

https://eloquentjavascript.net/18_http.html

the primitive data-sending that the network gives you is already a rather
tricky problem.

The Transmission Control Protocol (TCP) is a protocol that addresses this
problem. All internet-connected devices “speak” it, and most communication
on the internet is built on top of it.

A TCP connection works as follows: one computer must be waiting, or
listening, for other computers to start talking to it. To be able to listen for
different kinds of communication at the same time on a single machine, each
listener has a number (called a port) associated with it. Most protocols specify
which port should be used by default. For example, when we want to send an
email using the SMTP protocol, the machine through which we send it is
expected to be listening on port 25.

Another computer can then establish a connection by connecting to the target
machine using the correct port number. If the target machine can be reached
and is listening on that port, the connection is successfully created. The
listening computer is called the server, and the connecting computer is called
the client.

Such a connection acts as a two-way pipe through which bits can flow—the
machines on both ends can put data into it. Once the bits are successfully
transmitted, they can be read out again by the machine on the other side. This
is a convenient model. You could say that TCP provides an abstraction of the
network.

The Web

The World Wide Web (not to be confused with the internet as a whole) is a set
of protocols and formats that allow us to visit web pages in a browser. “Web”
refers to the fact that such pages can easily link to each other, thus connecting
into a huge mesh that users can move through.

To become part of the web, all you need to do is connect a machine to the
internet and have it listen on port 80 with the HTTP protocol so that other
computers can ask it for documents.

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 3/10

Each document on the web is named by a uniform resource locator (URL),
which looks something like this:

 http://eloquentjavascript.net/13_browser.html
 | | | |

 protocol server path

The first part tells us that this URL uses the HTTP protocol (as opposed to, for
example, encrypted HTTP, which would be https://). Then comes the part
that identifies which server we are requesting the document from. Last is a
path string that identifies the document (or resource) we are interested in.

Machines connected to the internet get an IP address, a number that can be
used to send messages to that machine, and looks something like
149.210.142.219 or 2001:4860:4860::8888 . Since lists of more or less
random numbers are hard to remember and awkward to type, you can instead
register a domain name for an address or set of addresses. I registered
eloquentjavascript.net to point at the IP address of a machine I control and
can thus use that domain name to serve web pages.

If you type this URL into your browser’s address bar, the browser will try to
retrieve and display the document at that URL. First, your browser has to find
out what address eloquentjavascript.net refers to. Then, using the HTTP
protocol, it will make a connection to the server at that address and ask for
the resource /13_browser.html. If all goes well, the server sends back a
document, which your browser then displays on your screen.

HTML

HTML, which stands for HyperText Markup Language, is the document
format used for web pages. An HTML document contains text, as well as tags
that give structure to the text, describing things such as links, paragraphs, and
headings.

A short HTML document might look like this:

<!doctype html>

<html>
 <head>

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 4/10

 <meta charset="utf-8">
 <title>My home page</title>

 </head>
 <body>
 <h1>My home page</h1>
 <p>Hello, I am Marijn and this is my home page.</p>

 <p>I also wrote a book! Read it
 here.</p>
 </body>

</html>

The tags, wrapped in angle brackets (< and > , the symbols for less than and
greater than), provide information about the structure of the document. The
other text is just plain text.

The document starts with <!doctype html> , which tells the browser to
interpret the page as modern HTML, as opposed to obsolete styles used in the
past.

HTML documents have a head and a body. The head contains information
about the document, and the body contains the document itself. In this case,
the head declares that the title of this document is “My home page” and that it
uses the UTF-8 encoding, which is a way to encode Unicode text as binary
data. The document’s body contains a heading (<h1> , meaning “heading 1”—
<h2> to <h6> produce subheadings) and two paragraphs (<p>).

Tags come in several forms. An element, such as the body, a paragraph, or a
link, is started by an opening tag like <p> and ended by a closing tag like
</p> . Some opening tags, such as the one for the link (<a>), contain extra
information in the form of name="value" pairs. These are called attributes.
In this case, the destination of the link is indicated with href="http://
eloquentjavascript.net" , where href stands for “hypertext reference”.

Some kinds of tags do not enclose anything and thus do not need to be closed.
The metadata tag <meta charset="utf-8"> is an example of this.

To be able to include angle brackets in the text of a document even though
they have a special meaning in HTML, yet another form of special notation
has to be introduced. A plain opening angle bracket is written as < (“less

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 5/10

than”), and a closing bracket is written as > (“greater than”). In HTML, an
ampersand (&) character followed by a name or character code and a
semicolon (;) is called an entity and will be replaced by the character it
encodes.

This is analogous to the way backslashes are used in JavaScript strings. Since
this mechanism gives ampersand characters a special meaning too, they need
to be escaped as & . Inside attribute values, which are wrapped in double
quotes, " can be used to insert a literal quote character.

HTML is parsed in a remarkably error-tolerant way. When tags that should be
there are missing, the browser automatically adds them. The way this is done
has been standardized, and you can rely on all modern browsers to do it in the
same way.

The following document will be treated just like the one shown previously:

<!doctype html>

<meta charset=utf-8>
<title>My home page</title>

<h1>My home page</h1>

<p>Hello, I am Marijn and this is my home page.
<p>I also wrote a book! Read it
 here.

The <html> , <head> , and <body> tags are completely gone. The browser
knows that <meta> and <title> belong in the head and that <h1> means the
body has started. Furthermore, I am no longer explicitly closing the
paragraphs since opening a new paragraph or ending the document will close
them implicitly. The quotes around the attribute values are also gone.

This book will usually omit the <html> , <head> , and <body> tags from
examples to keep them short and free of clutter. I will close tags and include
quotes around attributes, though.

I will also usually omit the doctype and charset declaration. Don’t take this
as encouragement to drop these from HTML documents. Browsers will often

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 6/10

do ridiculous things when you forget them. Consider the doctype and the
charset metadata to be implicitly present in examples, even when they are
not actually shown in the text.

HTML and JavaScript

In the context of this book, the most important HTML tag is <script> , which
allows us to include a piece of JavaScript in a document.

<h1>Testing alert</h1>

<script>alert("hello!");</script>

Such a script will run as soon as its <script> tag is encountered while the
browser reads the HTML. This page will pop up a dialog when opened—the
alert function resembles prompt , in that it pops up a little window, but only
shows a message without asking for input.

Including large programs directly in HTML documents is often impractical.
The <script> tag can be given an src attribute to fetch a script file (a text
file containing a JavaScript program) from a URL.

<h1>Testing alert</h1>
<script src="code/hello.js"></script>

The code/hello.js file included here contains the same program—
alert("hello!") . When an HTML page references other URLs as part of
itself, such as an image file or a script, web browsers will retrieve them
immediately and include them in the page.

A script tag must always be closed with </script> , even if it refers to a script
file and doesn’t contain any code. If you forget this, the rest of the page will be
interpreted as part of the script.

You can load ES modules (see Chapter 10) in the browser by giving your script
tag a type="module" attribute. Such modules can depend on other modules
by using URLs relative to themselves as module names in import
declarations.

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 7/10

https://eloquentjavascript.net/10_modules.html#es

Some attributes can also contain a JavaScript program. The <button> tag
(which shows up as a button) supports an onclick attribute. The attribute’s
value will be run whenever the button is clicked.

<button onclick="alert('Boom!');">DO NOT PRESS</button>

Note that I had to use single quotes for the string in the onclick attribute
because double quotes are already used to quote the whole attribute. I could
also have used " to escape the inner quotes.

In the sandbox

Running programs downloaded from the internet is potentially dangerous.
You don’t know much about the people behind most sites you visit, and they
do not necessarily mean well. Running programs by malicious actors is how
you get your computer infected by viruses, your data stolen, and your
accounts hacked.

Yet the attraction of the web is that you can browse it without necessarily
trusting all the pages you visit. This is why browsers severely limit the things a
JavaScript program may do: it can’t look at the files on your computer or
modify anything not related to the web page it was embedded in.

Isolating a programming environment in this way is called sandboxing, the
idea being that the program is harmlessly playing in a sandbox. But you
should imagine this particular kind of sandbox as having a cage of thick steel
bars over it so that the programs playing in it can’t actually get out.

The hard part of sandboxing is allowing programs enough room to be useful
while restricting them from doing anything dangerous. Lots of useful
functionality, such as communicating with other servers or reading the
content of the copy-paste clipboard, can also be used for problematic, privacy-
invading purposes.

Every now and then, someone comes up with a new way to circumvent the
limitations of a browser and do something harmful, ranging from leaking
minor private information to taking over the whole machine on which the
browser is running. The browser developers respond by fixing the hole, and

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 8/10

all is well again—until the next problem is discovered, and hopefully
publicized, rather than secretly exploited by some government agency or
criminal organization.

Compatibility and the browser wars

In the early stages of the web, a browser called Mosaic dominated the market.
After a few years, the balance shifted to Netscape, which was, in turn, largely
supplanted by Microsoft’s Internet Explorer. At any point where a single
browser was dominant, that browser’s vendor would feel entitled to
unilaterally invent new features for the web. Since most users used the most
popular browser, websites would simply start using those features—never
mind the other browsers.

This was the dark age of compatibility, often called the browser wars. Web
developers were left with not one unified web but two or three incompatible
platforms. To make things worse, the browsers in use around 2003 were all
full of bugs, and of course the bugs were different for each browser. Life was
hard for people writing web pages.

Mozilla Firefox, a not-for-profit offshoot of Netscape, challenged Internet
Explorer’s position in the late 2000s. Because Microsoft was not particularly
interested in staying competitive at the time, Firefox took a lot of market
share away from it. Around the same time, Google introduced its Chrome
browser and Apple’s Safari browser gained popularity, leading to a situation
where there were four major players, rather than one.

The new players had a more serious attitude toward standards and better
engineering practices, giving us less incompatibility and fewer bugs.
Microsoft, seeing its market share crumble, came around and adopted these
attitudes in its Edge browser, which replaced Internet Explorer. If you are
starting to learn web development today, consider yourself lucky. The latest
versions of the major browsers behave quite uniformly and have relatively few
bugs.

Unfortunately, with Firefox’s market share getting ever smaller, and Edge
becoming just a wrapper around Chrome’s core in 2018, this uniformity might
once again take the form of a single vendor—Google, this time—having

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 9/10

enough control over the browser market to push its idea of what the web
should look like onto the rest of the world.

For what it is worth, this long chain of historical events and accidents has
produced the web platform that we have today. In the next chapters, we are
going to write programs for it.

◂ ● ▸ ?

27/06/2024, 18:47 JavaScript and the Browser :: Eloquent JavaScript

https://eloquentjavascript.net/13_browser.html 10/10

https://eloquentjavascript.net/12_language.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/14_dom.html

