
◂ ● ▸ ?
Project: A Programming Language

Building your own programming language is surprisingly easy (as long as you
do not aim too high) and very enlightening.

The main thing I want to show in this chapter is that there’s no magic
involved in building a programming language. I’ve often felt that some human
inventions were so immensely clever and complicated that I’d never be able to
understand them. But with a little reading and experimenting, they often turn
out to be quite mundane.

We will build a programming language called Egg. It will be a tiny, simple
language—but one that is powerful enough to express any computation you
can think of. It will allow simple abstraction based on functions.

Parsing

The evaluator, which determines the meaning of expressions in a programming
language, is just another program.”

“

Hal Abelson and Gerald Sussman, Structure and Interpretation of Computer
Programs

—

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 1/17

https://eloquentjavascript.net/11_async.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/13_browser.html

The most immediately visible part of a programming language is its syntax, or
notation. A parser is a program that reads a piece of text and produces a data
structure that reflects the structure of the program contained in that text. If
the text does not form a valid program, the parser should point out the error.

Our language will have a simple and uniform syntax. Everything in Egg is an
expression. An expression can be the name of a binding, a number, a string,
or an application. Applications are used for function calls but also for
constructs such as if or while .

To keep the parser simple, strings in Egg do not support anything like
backslash escapes. A string is simply a sequence of characters that are not
double quotes, wrapped in double quotes. A number is a sequence of digits.
Binding names can consist of any character that is not whitespace and that
does not have a special meaning in the syntax.

Applications are written the way they are in JavaScript, by putting
parentheses after an expression and having any number of arguments
between those parentheses, separated by commas.

do(define(x, 10),
 if(>(x, 5),

 print("large"),
 print("small")))

The uniformity of the Egg language means that things that are operators in
JavaScript (such as >) are normal bindings in this language, applied just like
other functions. Since the syntax has no concept of a block, we need a do
construct to represent doing multiple things in sequence.

The data structure that the parser will use to describe a program consists of
expression objects, each of which has a type property indicating the kind of
expression it is and other properties to describe its content.

Expressions of type "value" represent literal strings or numbers. Their
value property contains the string or number value that they represent.
Expressions of type "word" are used for identifiers (names). Such objects
have a name property that holds the identifier’s name as a string. Finally,
"apply" expressions represent applications. They have an operator

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 2/17

property that refers to the expression that is being applied, as well as an args
property that holds an array of argument expressions.

The >(x, 5) part of the previous program would be represented like this:

{
 type: "apply",

 operator: {type: "word", name: ">"},
 args: [
 {type: "word", name: "x"},
 {type: "value", value: 5}

]
}

Such a data structure is called a syntax tree. If you imagine the objects as dots
and the links between them as lines between those dots, as shown in the
following diagram, the structure has a treelike shape. The fact that
expressions contain other expressions, which in turn might contain more
expressions, is similar to the way tree branches split and split again.

do
define

x
10

if
>

x
5

print
"large"

print
"small"

Contrast this to the parser we wrote for the configuration file format in
Chapter 9, which had a simple structure: it split the input into lines and
handled those lines one at a time. There were only a few simple forms that a
line was allowed to have.

Here we must find a different approach. Expressions are not separated into
lines, and they have a recursive structure. Application expressions contain
other expressions.

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 3/17

https://eloquentjavascript.net/09_regexp.html#ini

Fortunately, this problem can be solved very well by writing a parser function
that is recursive in a way that reflects the recursive nature of the language.

We define a function parseExpression that takes a string as input. It returns
an object containing the data structure for the expression at the start of the
string, along with the part of the string left after parsing this expression.
When parsing subexpressions (the argument to an application, for example),
this function can be called again, yielding the argument expression as well as
the text that remains. This text may in turn contain more arguments or may
be the closing parenthesis that ends the list of arguments.

This is the first part of the parser:

function parseExpression(program) {
 program = skipSpace(program);

 let match, expr;
 if (match = /^"([^"]*)"/.exec(program)) {
 expr = {type: "value", value: match[1]};
 } else if (match = /^\d+\b/.exec(program)) {

 expr = {type: "value", value: Number(match[0])};
 } else if (match = /^[^\s(),#"]+/.exec(program)) {
 expr = {type: "word", name: match[0]};

 } else {
 throw new SyntaxError("Unexpected syntax: " + program);
 }

 return parseApply(expr, program.slice(match[0].length));
}

function skipSpace(string) {
 let first = string.search(/\S/);
 if (first == -1) return "";

 return string.slice(first);
}

Because Egg, like JavaScript, allows any amount of whitespace between its
elements, we have to repeatedly cut the whitespace off the start of the
program string. The skipSpace function helps with this.

After skipping any leading space, parseExpression uses three regular
expressions to spot the three atomic elements that Egg supports: strings,

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 4/17

numbers, and words. The parser constructs a different kind of data structure
depending on which expression matches. If the input does not match one of
these three forms, it is not a valid expression, and the parser throws an error.
We use the SyntaxError constructor here. This is an exception class defined
by the standard, like Error , but more specific.

We then cut off the part that was matched from the program string and pass
that, along with the object for the expression, to parseApply , which checks
whether the expression is an application. If so, it parses a parenthesized list of
arguments.

function parseApply(expr, program) {
 program = skipSpace(program);

 if (program[0] != "(") {
 return {expr: expr, rest: program};
 }

 program = skipSpace(program.slice(1));
 expr = {type: "apply", operator: expr, args: []};
 while (program[0] != ")") {

 let arg = parseExpression(program);
 expr.args.push(arg.expr);
 program = skipSpace(arg.rest);

 if (program[0] == ",") {
 program = skipSpace(program.slice(1));
 } else if (program[0] != ")") {
 throw new SyntaxError("Expected ',' or ')'");

 }
 }
 return parseApply(expr, program.slice(1));

}

If the next character in the program is not an opening parenthesis, this is not
an application, and parseApply returns the expression it was given.
Otherwise, it skips the opening parenthesis and creates the syntax tree object
for this application expression. It then recursively calls parseExpression to
parse each argument until a closing parenthesis is found. The recursion is
indirect, through parseApply and parseExpression calling each other.

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 5/17

Because an application expression can itself be applied (such as in
multiplier(2)(1)), parseApply must, after it has parsed an application,
call itself again to check whether another pair of parentheses follows.

This is all we need to parse Egg. We wrap it in a convenient parse function
that verifies that it has reached the end of the input string after parsing the
expression (an Egg program is a single expression), and that gives us the
program’s data structure.

function parse(program) {
 let {expr, rest} = parseExpression(program);

 if (skipSpace(rest).length > 0) {
 throw new SyntaxError("Unexpected text after program");
 }
 return expr;

}

console.log(parse("+(a, 10)"));

// → {type: "apply",
// operator: {type: "word", name: "+"},
// args: [{type: "word", name: "a"},

// {type: "value", value: 10}]}

It works! It doesn’t give us very helpful information when it fails and doesn’t
store the line and column on which each expression starts, which might be
helpful when reporting errors later, but it’s good enough for our purposes.

The evaluator

What can we do with the syntax tree for a program? Run it, of course! And
that is what the evaluator does. You give it a syntax tree and a scope object
that associates names with values, and it will evaluate the expression that the
tree represents and return the value that this produces.

const specialForms = Object.create(null);

function evaluate(expr, scope) {
 if (expr.type == "value") {
 return expr.value;

 } else if (expr.type == "word") {
 if (expr.name in scope) {

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 6/17

 return scope[expr.name];
 } else {

 throw new ReferenceError(
 `Undefined binding: ${expr.name}`);
 }
 } else if (expr.type == "apply") {

 let {operator, args} = expr;
 if (operator.type == "word" &&
 operator.name in specialForms) {

 return specialForms[operator.name](expr.args, scope);
 } else {
 let op = evaluate(operator, scope);

 if (typeof op == "function") {
 return op(...args.map(arg => evaluate(arg, scope)));
 } else {
 throw new TypeError("Applying a non-function.");

 }
 }
 }

}

The evaluator has code for each of the expression types. A literal value
expression produces its value. (For example, the expression 100 evaluates to
the number 100.) For a binding, we must check whether it is actually defined
in the scope and, if it is, fetch the binding’s value.

Applications are more involved. If they are a special form, like if , we do not
evaluate anything—we just and pass the argument expressions, along with the
scope, to the function that handles this form. If it is a normal call, we evaluate
the operator, verify that it is a function, and call it with the evaluated
arguments.

We use plain JavaScript function values to represent Egg’s function values.
We will come back to this later, when the special form fun is defined.

The recursive structure of evaluate resembles the structure of the parser,
and both mirror the structure of the language itself. It would also be possible
to combine the parser and the evaluator into one function and evaluate during
parsing, but splitting them up this way makes the program clearer and more
flexible.

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 7/17

This is really all that’s needed to interpret Egg. It’s that simple. But without
defining a few special forms and adding some useful values to the
environment, you can’t do much with this language yet.

Special forms

The specialForms object is used to define special syntax in Egg. It associates
words with functions that evaluate such forms. It is currently empty. Let’s add
if .

specialForms.if = (args, scope) => {

 if (args.length != 3) {
 throw new SyntaxError("Wrong number of args to if");
 } else if (evaluate(args[0], scope) !== false) {

 return evaluate(args[1], scope);
 } else {
 return evaluate(args[2], scope);
 }

};

Egg’s if construct expects exactly three arguments. It will evaluate the first,
and if the result isn’t the value false , it will evaluate the second. Otherwise,
the third gets evaluated. This if form is more similar to JavaScript’s ternary
?: operator than to JavaScript’s if . It is an expression, not a statement, and
it produces a value, namely, the result of the second or third argument.

Egg also differs from JavaScript in how it handles the condition value to if . It
will treat only the value false as false, not things like zero or the empty
string.

The reason we need to represent if as a special form rather than a regular
function is that all arguments to functions are evaluated before the function is
called, whereas if should evaluate only either its second or its third
argument, depending on the value of the first.

The while form is similar.

specialForms.while = (args, scope) => {
 if (args.length != 2) {

 throw new SyntaxError("Wrong number of args to while");

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 8/17

 }
 while (evaluate(args[0], scope) !== false) {

 evaluate(args[1], scope);
 }

 // Since undefined does not exist in Egg, we return false,

 // for lack of a meaningful result.
 return false;
};

Another basic building block is do , which executes all its arguments from top
to bottom. Its value is the value produced by the last argument.

specialForms.do = (args, scope) => {
 let value = false;
 for (let arg of args) {

 value = evaluate(arg, scope);
 }
 return value;
};

To be able to create bindings and give them new values, we also create a form
called define . It expects a word as its first argument and an expression
producing the value to assign to that word as its second argument. Since
define , like everything, is an expression, it must return a value. We’ll make it
return the value that was assigned (just like JavaScript’s = operator).

specialForms.define = (args, scope) => {
 if (args.length != 2 || args[0].type != "word") {
 throw new SyntaxError("Incorrect use of define");

 }
 let value = evaluate(args[1], scope);
 scope[args[0].name] = value;

 return value;
};

The environment

The scope accepted by evaluate is an object with properties whose names
correspond to binding names and whose values correspond to the values

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 9/17

those bindings are bound to. Let’s define an object to represent the global
scope.

To be able to use the if construct we just defined, we must have access to
Boolean values. Since there are only two Boolean values, we do not need
special syntax for them. We simply bind two names to the values true and
false and use them.

const topScope = Object.create(null);

topScope.true = true;
topScope.false = false;

We can now evaluate a simple expression that negates a Boolean value.

let prog = parse(`if(true, false, true)`);
console.log(evaluate(prog, topScope));

// → false

To supply basic arithmetic and comparison operators, we will also add some
function values to the scope. In the interest of keeping the code short, we’ll
use Function to synthesize a bunch of operator functions in a loop instead of
defining them individually.

for (let op of ["+", "-", "*", "/", "==", "<", ">"]) {
 topScope[op] = Function("a, b", `return a ${op} b;`);

}

It is also useful to have a way to output values, so we’ll wrap console.log in
a function and call it print .

topScope.print = value => {
 console.log(value);

 return value;
};

That gives us enough elementary tools to write simple programs. The
following function provides a convenient way to parse a program and run it in
a fresh scope:

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 10/17

function run(program) {
 return evaluate(parse(program), Object.create(topScope));

}

We’ll use object prototype chains to represent nested scopes so that the
program can add bindings to its local scope without changing the top-level
scope.

run(`
do(define(total, 0),
 define(count, 1),

 while(<(count, 11),
 do(define(total, +(total, count)),
 define(count, +(count, 1)))),

 print(total))
`);
// → 55

This is the program we’ve seen several times before that computes the sum of
the numbers 1 to 10, expressed in Egg. It is clearly uglier than the equivalent
JavaScript program—but not bad for a language implemented in less than 150
lines of code.

Functions

A programming language without functions is a poor programming language
indeed. Fortunately, it isn’t hard to add a fun construct, which treats its last
argument as the function’s body and uses all arguments before that as the
names of the function’s parameters.

specialForms.fun = (args, scope) => {
 if (!args.length) {

 throw new SyntaxError("Functions need a body");
 }
 let body = args[args.length - 1];
 let params = args.slice(0, args.length - 1).map(expr => {

 if (expr.type != "word") {
 throw new SyntaxError("Parameter names must be words");
 }

 return expr.name;
 });

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 11/17

 return function(...args) {

 if (args.length != params.length) {
 throw new TypeError("Wrong number of arguments");
 }
 let localScope = Object.create(scope);

 for (let i = 0; i < args.length; i++) {
 localScope[params[i]] = args[i];
 }

 return evaluate(body, localScope);
 };
};

Functions in Egg get their own local scope. The function produced by the fun
form creates this local scope and adds the argument bindings to it. It then
evaluates the function body in this scope and returns the result.

run(`
do(define(plusOne, fun(a, +(a, 1))),
 print(plusOne(10)))
`);

// → 11

run(`

do(define(pow, fun(base, exp,
 if(==(exp, 0),
 1,

 *(base, pow(base, -(exp, 1)))))),
 print(pow(2, 10)))
`);
// → 1024

Compilation

What we have built is an interpreter. During evaluation, it acts directly on the
representation of the program produced by the parser.

Compilation is the process of adding another step between the parsing and
the running of a program, which transforms the program into something that
can be evaluated more efficiently by doing as much work as possible in
advance. For example, in well-designed languages it is obvious, for each use of

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 12/17

a binding, which binding is being referred to, without actually running the
program. This can be used to avoid looking up the binding by name every
time it is accessed, instead directly fetching it from some predetermined
memory location.

Traditionally, compilation involves converting the program to machine code,
the raw format that a computer’s processor can execute. But any process that
converts a program to a different representation can be thought of as
compilation.

It would be possible to write an alternative evaluation strategy for Egg, one
that first converts the program to a JavaScript program, uses Function to
invoke the JavaScript compiler on it, and runs the result. When done right,
this would make Egg run very fast while still being quite simple to implement.

If you are interested in this topic and willing to spend some time on it, I
encourage you to try to implement such a compiler as an exercise.

Cheating

When we defined if and while , you probably noticed that they were more or
less trivial wrappers around JavaScript’s own if and while . Similarly, the
values in Egg are just regular old JavaScript values. Bridging the gap to a
more primitive system, such as the machine code the processor understands,
takes more effort—but the way it works resembles what we are doing here.

Though the toy language in this chapter doesn’t do anything that couldn’t be
done better in JavaScript, there are situations where writing small languages
helps get real work done.

Such a language does not have to resemble a typical programming language.
If JavaScript didn’t come equipped with regular expressions, for example, you
could write your own parser and evaluator for regular expressions.

Or imagine you are building a program that makes it possible to quickly
create parsers by providing a logical description of the language they need to
parse. You could define a specific notation for that, and a compiler that
compiles it to a parser program.

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 13/17

expr = number | string | name | application

number = digit+

name = letter+

string = '"' (! '"')* '"'

application = expr '(' (expr (',' expr)*)? ')'

This is what is usually called a domain-specific language, a language tailored
to express a narrow domain of knowledge. Such a language can be more
expressive than a general-purpose language because it is designed to describe
exactly the things that need to be described in its domain and nothing else.

Exercises

Arrays

Add support for arrays to Egg by adding the following three functions to the
top scope: array(...values) to construct an array containing the argument
values, length(array) to get an array’s length, and element(array, n) to
fetch the nth element from an array.

// Modify these definitions...

topScope.array = "...";

topScope.length = "...";

topScope.element = "...";

run(`

do(define(sum, fun(array,
 do(define(i, 0),
 define(sum, 0),

 while(<(i, length(array)),
 do(define(sum, +(sum, element(array, i))),
 define(i, +(i, 1)))),
 sum))),

 print(sum(array(1, 2, 3))))

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 14/17

`);
// → 6

Display hints...

Closure

The way we have defined fun allows functions in Egg to reference the
surrounding scope, allowing the function’s body to use local values that were
visible at the time the function was defined, just like JavaScript functions do.

The following program illustrates this: function f returns a function that adds
its argument to f ’s argument, meaning that it needs access to the local scope
inside f to be able to use binding a .

run(`
do(define(f, fun(a, fun(b, +(a, b)))),
 print(f(4)(5)))
`);

// → 9

Go back to the definition of the fun form and explain which mechanism
causes this to work.

Display hints...

Comments

It would be nice if we could write comments in Egg. For example, whenever
we find a hash sign (#), we could treat the rest of the line as a comment and
ignore it, similar to // in JavaScript.

We do not have to make any big changes to the parser to support this. We can
simply change skipSpace to skip comments as if they are whitespace so that
all the points where skipSpace is called will now also skip comments. Make
this change.

// This is the old skipSpace. Modify it...
function skipSpace(string) {

 let first = string.search(/\S/);
 if (first == -1) return "";

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 15/17

 return string.slice(first);
}

console.log(parse("# hello\nx"));
// → {type: "word", name: "x"}

console.log(parse("a # one\n # two\n()"));
// → {type: "apply",
// operator: {type: "word", name: "a"},

// args: []}

Display hints...

Fixing scope

Currently, the only way to assign a binding a value is define . This construct
acts as a way both to define new bindings and to give existing ones a new
value.

This ambiguity causes a problem. When you try to give a nonlocal binding a
new value, you will end up defining a local one with the same name instead.
Some languages work like this by design, but I’ve always found it an awkward
way to handle scope.

Add a special form set , similar to define , which gives a binding a new value,
updating the binding in an outer scope if it doesn’t already exist in the inner
scope. If the binding is not defined at all, throw a ReferenceError (another
standard error type).

The technique of representing scopes as simple objects, which has made
things convenient so far, will get in your way a little at this point. You might
want to use the Object.getPrototypeOf function, which returns the
prototype of an object. Also remember that you can use Object.hasOwn to
find out if a given object has a property.

specialForms.set = (args, scope) => {
 // Your code here.

};

run(`
do(define(x, 4),

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 16/17

 define(setx, fun(val, set(x, val))),
 setx(50),

 print(x))
`);
// → 50
run(`set(quux, true)`);

// → Some kind of ReferenceError

Display hints...
◂ ● ▸ ?

27/06/2024, 18:46 Project: A Programming Language :: Eloquent JavaScript

https://eloquentjavascript.net/12_language.html 17/17

https://eloquentjavascript.net/11_async.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/13_browser.html

