
◂ ● ▸ ?
Asynchronous Programming

The central part of a computer, the part that carries out the individual steps
that make up our programs, is called the processor. The programs we have
seen so far will keep the processor busy until they have finished their work.
The speed at which something like a loop that manipulates numbers can be
executed depends pretty much entirely on the speed of the computer’s
processor and memory.

But many programs interact with things outside of the processor. For
example, they may communicate over a computer network or request data
from the hard disk—which is a lot slower than getting it from memory.

When such a thing is happening, it would be a shame to let the processor sit
idle—there might be some other work it could do in the meantime. In part,
this is handled by your operating system, which will switch the processor
between multiple running programs. But that doesn’t help when we want a

Who can wait quietly while the mud settles?
Who can remain still until the moment of action?”

“

Laozi, Tao Te Ching—

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 1/25

https://eloquentjavascript.net/10_modules.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/12_language.html

single program to be able to make progress while it is waiting for a network
request.

Asynchronicity

In a synchronous programming model, things happen one at a time. When
you call a function that performs a long-running action, it returns only when
the action has finished and it can return the result. This stops your program
for the time the action takes.

An asynchronous model allows multiple things to happen at the same time.
When you start an action, your program continues to run. When the action
finishes, the program is informed and gets access to the result (for example,
the data read from disk).

We can compare synchronous and asynchronous programming using a small
example: a program that makes two requests over the network and then
combines the results.

In a synchronous environment, where the request function returns only after
it has done its work, the easiest way to perform this task is to make the
requests one after the other. This has the drawback that the second request
will be started only when the first has finished. The total time taken will be at
least the sum of the two response times.

The solution to this problem, in a synchronous system, is to start additional
threads of control. A thread is another running program whose execution may
be interleaved with other programs by the operating system—since most
modern computers contain multiple processors, multiple threads may even
run at the same time, on different processors. A second thread could start the
second request, and then both threads wait for their results to come back,
after which they resynchronize to combine their results.

In the following diagram, the thick lines represent time the program spends
running normally, and the thin lines represent time spent waiting for the
network. In the synchronous model, the time taken by the network is part of
the timeline for a given thread of control. In the asynchronous model, starting
a network action allows the program to continue running while the network

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 2/25

communication happens alongside it, notifying the program when it is
finished.

synchronous, single thread of control

synchronous, two threads of control

asynchronous

Another way to describe the difference is that waiting for actions to finish is
implicit in the synchronous model, while it is explicit—under our control—in
the asynchronous one.

Asynchronicity cuts both ways. It makes expressing programs that do not fit
the straight-line model of control easier, but it can also make expressing
programs that do follow a straight line more awkward. We’ll see some ways to
reduce this awkwardness later in the chapter.

Both prominent JavaScript programming platforms—browsers and Node.js—
make operations that might take a while asynchronous, rather than relying on
threads. Since programming with threads is notoriously hard (understanding
what a program does is much more difficult when it’s doing multiple things at
once), this is generally considered a good thing.

Callbacks

One approach to asynchronous programming is to make functions that need
to wait for something take an extra argument, a callback function. The
asynchronous function starts a process, sets things up so that the callback
function is called when the process finishes, and then returns.

As an example, the setTimeout function, available both in Node.js and in
browsers, waits a given number of milliseconds and then calls a function.

setTimeout(() => console.log("Tick"), 500);

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 3/25

Waiting is not generally important work, but it can be very useful when you
need to arrange for something to happen at a certain time or check whether
some action is taking longer than expected.

Another example of a common asynchronous operation is reading a file from
a device’s storage. Imagine you have a function readTextFile that reads a
file’s content as a string and passes it to a callback function.

readTextFile("shopping_list.txt", content => {
 console.log(`Shopping List:\n${content}`);

});
// → Shopping List:
// → Peanut butter
// → Bananas

The readTextFile function is not part of standard JavaScript. We will see
how to read files in the browser and in Node.js in later chapters.

Performing multiple asynchronous actions in a row using callbacks means
that you have to keep passing new functions to handle the continuation of the
computation after the actions. An asynchronous function that compares two
files and produces a boolean indicating whether their content is the same
might look like this:

function compareFiles(fileA, fileB, callback) {
 readTextFile(fileA, contentA => {
 readTextFile(fileB, contentB => {

 callback(contentA == contentB);
 });
 });

}

This style of programming is workable, but the indentation level increases
with each asynchronous action because you end up in another function. Doing
more complicated things, such as wrapping asynchronous actions in a loop,
can get awkward.

In a way, asynchronicity is contagious. Any function that calls a function that
works asynchronously must itself be asynchronous, using a callback or similar
mechanism to deliver its result. Calling a callback is somewhat more involved

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 4/25

and error-prone than simply returning a value, so needing to structure large
parts of your program that way is not great.

Promises

A slightly different way to build an asynchronous program is to have
asynchronous functions return an object that represents its (future) result
instead of passing around callback functions. This way such functions actually
return something meaningful, and the shape of the program more closely
resembles that of synchronous programs.

This is what the standard class Promise is for. A promise is a receipt
representing a value that may not be available yet. It provides a then method
that allows you to register a function that should be called when the action for
which it is waiting finishes. When the promise is resolved, meaning its value
becomes available, such functions (there can be multiple) are called with the
result value. It is possible to call then on a promise that has already resolved
—your function will still be called.

The easiest way to create a promise is by calling Promise.resolve . This
function ensures that the value you give it is wrapped in a promise. If it’s
already a promise, it is simply returned. Otherwise, you get a new promise
that immediately resolves with your value as its result.

let fifteen = Promise.resolve(15);

fifteen.then(value => console.log(`Got ${value}`));
// → Got 15

To create a promise that does not immediately resolve, you can use Promise
as a constructor. It has a somewhat odd interface: the constructor expects a
function as argument, which it immediately calls, passing it a function that it
can use to resolve the promise.

For example, this is how you could create a promise-based interface for the
readTextFile function:

function textFile(filename) {

 return new Promise(resolve => {
 readTextFile(filename, text => resolve(text));

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 5/25

 });
}

textFile("plans.txt").then(console.log);

Note how, in contrast to callback-style functions, this asynchronous function
returns a meaningful value—a promise to give you the contents of the file at
some point in the future.

A useful thing about the then method is that it itself returns another promise.
This one resolves to the value returned by the callback function or, if that
returned value is a promise, to the value that promise resolves to. Thus, you
can “chain” multiple calls to then together to set up a sequence of
asynchronous actions.

This function, which reads a file full of filenames, and returns the content of a
random file in that list, shows this kind of asynchronous promise pipeline:

function randomFile(listFile) {
 return textFile(listFile)

 .then(content => content.trim().split("\n"))
 .then(ls => ls[Math.floor(Math.random() * ls.length)])
 .then(filename => textFile(filename));

}

The function returns the result of this chain of then calls. The initial promise
fetches the list of files as a string. The first then call transforms that string
into an array of lines, producing a new promise. The second then call picks a
random line from that, producing a third promise that yields a single
filename. The final then call reads this file, so that the result of the function
as a whole is a promise that returns the content of a random file.

In this code, the functions used in the first two then calls return a regular
value that will immediately be passed into the promise returned by then
when the function returns. The last then call returns a promise
(textFile(filename)), making it an actual asynchronous step.

It would also have been possible to perform all these steps inside a single
then callback, since only the last step is actually asynchronous. But the kind

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 6/25

of then wrappers that only do some synchronous data transformation are
often useful, such as when you want to return a promise that produces a
processed version of some asynchronous result.

function jsonFile(filename) {
 return textFile(filename).then(JSON.parse);

}

jsonFile("package.json").then(console.log);

Generally, it is useful to think of a promise as a device that lets code ignore
the question of when a value is going to arrive. A normal value has to actually
exist before we can reference it. A promised value is a value that might
already be there or might appear at some point in the future. Computations
defined in terms of promises, by wiring them together with then calls, are
executed asynchronously as their inputs become available.

Failure

Regular JavaScript computations can fail by throwing an exception.
Asynchronous computations often need something like that. A network
request may fail, a file may not exist, or some code that is part of the
asynchronous computation may throw an exception.

One of the most pressing problems with the callback style of asynchronous
programming is that it makes it extremely difficult to ensure failures are
properly reported to the callbacks.

A common convention is to use the first argument to the callback to indicate
that the action failed, and the second to pass the value produced by the action
when it was successful.

someAsyncFunction((error, value) => {
 if (error) handleError(error);
 else processValue(value);

});

Such callback functions must always check whether they received an
exception and make sure that any problems they cause, including exceptions

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 7/25

thrown by functions they call, are caught and given to the right function.

Promises make this easier. They can be either resolved (the action finished
successfully) or rejected (it failed). Resolve handlers (as registered with then)
are called only when the action is successful, and rejections are propagated to
the new promise returned by then . When a handler throws an exception, this
automatically causes the promise produced by its then call to be rejected. If
any element in a chain of asynchronous actions fails, the outcome of the
whole chain is marked as rejected, and no success handlers are called beyond
the point where it failed.

Much like resolving a promise provides a value, rejecting one also provides a
value, usually called the reason of the rejection. When an exception in a
handler function causes the rejection, the exception value is used as the
reason. Similarly, when a handler returns a promise that is rejected, that
rejection flows into the next promise. There’s a Promise.reject function
that creates a new, immediately rejected promise.

To explicitly handle such rejections, promises have a catch method that
registers a handler to be called when the promise is rejected, similar to how
then handlers handle normal resolution. It’s also very much like then in that
it returns a new promise, which resolves to the original promise’s value when
that resolves normally and to the result of the catch handler otherwise. If a
catch handler throws an error, the new promise is also rejected.

As a shorthand, then also accepts a rejection handler as a second argument,
so you can install both types of handlers in a single method call: .
then(acceptHandler, rejectHandler) .

A function passed to the Promise constructor receives a second argument,
alongside the resolve function, which it can use to reject the new promise.

When our readTextFile function encounters a problem, it passes the error
to its callback function as a second argument. Our textFile wrapper should
actually check that argument, so that a failure causes the promise it returns to
be rejected.

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 8/25

function textFile(filename) {
 return new Promise((resolve, reject) => {

 readTextFile(filename, (text, error) => {
 if (error) reject(error);
 else resolve(text);
 });

 });
}

The chains of promise values created by calls to then and catch thus form a
pipeline through which asynchronous values or failures move. Since such
chains are created by registering handlers, each link has a success handler or
a rejection handler (or both) associated with it. Handlers that don’t match the
type of outcome (success or failure) are ignored. Handlers that do match are
called, and their outcome determines what kind of value comes next—success
when they return a non-promise value, rejection when they throw an
exception, and the outcome of the promise when they return a promise.

new Promise((_, reject) => reject(new Error("Fail")))

 .then(value => console.log("Handler 1:", value))
 .catch(reason => {
 console.log("Caught failure " + reason);

 return "nothing";
 })
 .then(value => console.log("Handler 2:", value));
// → Caught failure Error: Fail
// → Handler 2: nothing

The first then handler function isn’t called, because at that point of the
pipeline the promise holds a rejection. The catch handler handles that
rejection and returns a value, which is given to the second then handler
function.

Much like an uncaught exception is handled by the environment, JavaScript
environments can detect when a promise rejection isn’t handled and will
report this as an error.

Carla

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 9/25

It’s a sunny day in Berlin. The runway of the old, decommissioned airport is
teeming with cyclists and inline skaters. In the grass near a garbage container,
a flock of crows noisily mills about, trying to convince a group of tourists to
part with their sandwiches.

One of the crows stands out—a large scruffy female with a few white feathers
in her right wing. She is baiting people with a skill and confidence that
suggest she’s been doing this for a long time. When an elderly man is
distracted by the antics of another crow, she casually swoops in, snatches his
half-eaten bun from his hand, and sails away.

Contrary to the rest of the group, who look like they are happy to spend the
day goofing around here, the large crow looks purposeful. Carrying her loot,
she flies straight towards the roof of the hangar building, disappearing into an
air vent.

Inside the building, you can hear an odd tapping sound—soft, but persistent.
It comes from a narrow space under the roof of an unfinished stairwell. The
crow is sitting there, surrounded by her stolen snacks, half a dozen
smartphones (several of which are turned on), and a mess of cables. She
rapidly taps the screen of one of the phones with her beak. Words are
appearing on it. If you didn’t know better, you’d think she was typing.

This crow is known to her peers as “cāāw-krö”. But since those sounds are
poorly suited for human vocal chords, we’ll refer to her as Carla.

Carla is a somewhat peculiar crow. In her youth, she was fascinated by human
language, eavesdropping on people until she had a good grasp of what they
were saying. Later in life, her interest shifted to human technology, and she
started stealing phones to study them. Her current project is learning to
program. The text she is typing in her hidden lab is, in fact, a piece of
asynchronous JavaScript code.

Breaking In

Carla loves the internet. Annoyingly, the phone she is working on is about to
run out of prepaid data. The building has a wireless network, but it requires a
code to access.

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 10/25

Fortunately, the wireless routers in the building are 20 years old and poorly
secured. Doing some research, Carla finds out that the network authentication
mechanism has a flaw she can use. When joining the network, a device must
send along the correct six-digit passcode. The access point will reply with a
success or failure message depending on whether the right code is provided.
However, when sending a partial code (say, only three digits), the response is
different based on whether those digits are the correct start of the code or not.
Sending incorrect numbers immediately returns a failure message. When
sending the correct ones, the access point waits for more digits.

This makes it possible to greatly speed up the guessing of the number. Carla
can find the first digit by trying each number in turn, until she finds one that
doesn’t immediately return failure. Having one digit, she can find the second
digit in the same way, and so on, until she knows the entire passcode.

Assume Carla has a joinWifi function. Given the network name and the
passcode (as a string), the function tries to join the network, returning a
promise that resolves if successful and rejects if the authentication failed. The
first thing she needs is a way to wrap a promise so that it automatically rejects
after it takes too much time, to allow the program to quickly move on if the
access point doesn’t respond.

function withTimeout(promise, time) {
 return new Promise((resolve, reject) => {

 promise.then(resolve, reject);
 setTimeout(() => reject("Timed out"), time);
 });
}

This makes use of the fact that a promise can only be resolved or rejected
once. If the promise given as argument resolves or rejects first, that result will
be the result of the promise returned by withTimeout . If, on the other hand,
the setTimeout fires first, rejecting the promise, any further resolve or reject
calls are ignored.

To find the whole passcode, the program needs to repeatedly look for the next
digit by trying each digit. If authentication succeeds, we know we have found
what we are looking for. If it immediately fails, we know that digit was wrong,

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 11/25

and must try the next digit. If the request times out, we have found another
correct digit, and must continue by adding another digit.

Because you cannot wait for a promise inside a for loop, Carla uses a
recursive function to drive this process. On each call, this function gets the
code as we know it so far, as well as the next digit to try. Depending on what
happens, it may return a finished code or call through to itself, to either start
cracking the next position in the code or to try again with another digit.

function crackPasscode(networkID) {
 function nextDigit(code, digit) {

 let newCode = code + digit;
 return withTimeout(joinWifi(networkID, newCode), 50)
 .then(() => newCode)
 .catch(failure => {

 if (failure == "Timed out") {
 return nextDigit(newCode, 0);
 } else if (digit < 9) {

 return nextDigit(code, digit + 1);
 } else {
 throw failure;

 }
 });
 }
 return nextDigit("", 0);

}

The access point tends to respond to bad authentication requests in about 20
milliseconds, so to be safe, this function waits for 50 milliseconds before
timing out a request.

crackPasscode("HANGAR 2").then(console.log);
// → 555555

Carla tilts her head and sighs. This would have been more satisfying if the
code had been a bit harder to guess.

Async functions

Even with promises, this kind of asynchronous code is annoying to write.
Promises often need to be tied together in verbose, arbitrary-looking ways. To

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 12/25

create an asynchronous loop, Carla was forced to introduce a recursive
function.

The thing the cracking function actually does is completely linear—it always
waits for the previous action to complete before starting the next one. In a
synchronous programming model, it’d be more straightforward to express.

The good news is that JavaScript allows you to write pseudo-synchronous
code to describe asynchronous computation. An async function implicitly
returns a promise and can, in its body, await other promises in a way that
looks synchronous.

We can rewrite crackPasscode like this:

async function crackPasscode(networkID) {
 for (let code = "";;) {

 for (let digit = 0;; digit++) {
 let newCode = code + digit;
 try {
 await withTimeout(joinWifi(networkID, newCode), 50);

 return newCode;
 } catch (failure) {
 if (failure == "Timed out") {

 code = newCode;
 break;
 } else if (digit == 9) {

 throw failure;
 }
 }
 }

 }
}

This version more clearly shows the double loop structure of the function (the
inner loop tries digit 0 to 9, the outer loop adds digits to the passcode).

An async function is marked by the word async before the function
keyword. Methods can also be made async by writing async before their
name. When such a function or method is called, it returns a promise. As soon
as the function returns something, that promise is resolved. If the body
throws an exception, the promise is rejected.

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 13/25

Inside an async function, the word await can be put in front of an
expression to wait for a promise to resolve and only then continue the
execution of the function. If the promise rejects, an exception is raised at the
point of the await .

Such a function no longer runs from start to completion in one go like a
regular JavaScript function. Instead, it can be frozen at any point that has an
await and can be resumed at a later time.

For most asynchronous code, this notation is more convenient than directly
using promises. You do still need an understanding of promises, since in
many cases you’ll still interact with them directly. But when wiring them
together, async functions are generally more pleasant to write than chains of
then calls.

Generators

This ability of functions to be paused and then resumed again is not exclusive
to async functions. JavaScript also has a feature called generator functions.
These are similar, but without the promises.

When you define a function with function* (placing an asterisk after the
word function), it becomes a generator. When you call a generator, it
returns an iterator, which we already saw in Chapter 6.

function* powers(n) {

 for (let current = n;; current *= n) {
 yield current;
 }

}

for (let power of powers(3)) {
 if (power > 50) break;

 console.log(power);
}
// → 3
// → 9
// → 27

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 14/25

https://eloquentjavascript.net/06_object.html

Initially, when you call powers , the function is frozen at its start. Every time
you call next on the iterator, the function runs until it hits a yield
expression, which pauses it and causes the yielded value to become the next
value produced by the iterator. When the function returns (the one in the
example never does), the iterator is done.

Writing iterators is often much easier when you use generator functions. The
iterator for the Group class (from the exercise in Chapter 6) can be written
with this generator:

Group.prototype[Symbol.iterator] = function*() {
 for (let i = 0; i < this.members.length; i++) {

 yield this.members[i];
 }
};

There’s no longer a need to create an object to hold the iteration state—
generators automatically save their local state every time they yield.

Such yield expressions may occur only directly in the generator function
itself and not in an inner function you define inside of it. The state a generator
saves, when yielding, is only its local environment and the position where it
yielded.

An async function is a special type of generator. It produces a promise when
called, which is resolved when it returns (finishes) and rejected when it
throws an exception. Whenever it yields (awaits) a promise, the result of that
promise (value or thrown exception) is the result of the await expression.

A Corvid Art Project

One morning, Carla wakes up to unfamiliar noise from the tarmac outside of
her hangar. Hopping onto the edge of the roof, she sees the humans are
setting up for something. There’s a lot of electric cabling, a stage, and some
kind of big black wall being built up.

Being a curious crow, Carla takes a closer look at the wall. It appears to
consist of a number of large glass-fronted devices wired up to cables. On the
back, the devices say “LedTec SIG-5030”.

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 15/25

https://eloquentjavascript.net/06_object.html#group_iterator

A quick internet search turns up a user’s manual for these devices. They
appear to be traffic signs, with a programmable matrix of amber LED lights.
The intent is of the humans is probably to display some kind of information
on them during their event. Interestingly, the screens can be programmed
over a wireless network. Could it be they are connected to the building’s local
network?

Each device on a network gets an IP address, which other devices can use to
send it messages. We talk more about that in Chapter 13. Carla notices that
her own phones all get addresses like 10.0.0.20 or 10.0.0.33 . It might be
worth trying to send messages to all such addresses and see if any one of them
responds to the interface described in the manual for the signs.

Chapter 18 shows how to make real requests on real networks. In this chapter,
we’ll use a simplified dummy function called request for network
communication. This function takes two arguments—a network address and a
message, which may be anything that can be sent as JSON—and returns a
promise that either resolves to a response from the machine at the given
address, or a rejects if there was a problem.

According to the manual, you can change what is displayed on a SIG-5030
sign by sending it a message with content like {"command": "display",
"data": [0, 0, 3, …]} , where data holds one number per LED dot,
providing its brightness—0 means off, 3 means maximum brightness. Each
sign is 50 lights wide and 30 lights high, so an update command should send
1500 numbers.

This code sends a display update message to all addresses on the local
network, to see what sticks. Each of the numbers in an IP address can go from
0 to 255. In the data it sends, it activates a number of lights corresponding to
the network address’s last number.

for (let addr = 1; addr < 256; addr++) {
 let data = [];

 for (let n = 0; n < 1500; n++) {
 data.push(n < addr ? 3 : 0);
 }
 let ip = `10.0.0.${addr}`;

 request(ip, {command: "display", data})

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 16/25

https://eloquentjavascript.net/13_browser.html
https://eloquentjavascript.net/18_http.html

 .then(() => console.log(`Request to ${ip} accepted`))
 .catch(() => {});

}

Since most of these addresses won’t exist or will not accept such messages, the
catch call makes sure network errors don’t crash the program. The requests
are all sent out immediately, without waiting for other requests to finish, in
order to not waste time when some of the machines don’t answer.

Having fired off her network scan, Carla heads back outside to see the result.
To her delight, all of the screens are now showing a stripe of light in their top
left corners. They are on the local network, and they do accept commands.
She quickly notes the numbers shown on each screen. There are 9 screens,
arranged three high and three wide. They have the following network
addresses:

const screenAddresses = [
 "10.0.0.44", "10.0.0.45", "10.0.0.41",
 "10.0.0.31", "10.0.0.40", "10.0.0.42",

 "10.0.0.48", "10.0.0.47", "10.0.0.46"
];

Now this opens up possibilities for all kinds of shenanigans. She could show
“crows rule, humans drool” on the wall in giant letters. But that feels a bit
crude. Instead, she plans to show a video of a flying crow covering all of the
screens at night.

Carla finds a fitting video clip, in which a second and a half of footage can be
repeated to create a looping video showing a crow’s wingbeat. To fit the nine
screens (each of which can show 50×30 pixels), Carla cuts and resizes the
videos to get a series of 150×90 images, ten per second. Those are then each
cut into nine rectangles, and processed so that the dark spots on the video
(where the crow is) show a bright light, and the light spots (no crow) are left
dark, which should create the effect of an amber crow flying against a black
background.

She has set up the clipImages variable to hold an array of frames, where
each frame is represented with an array of nine sets of pixels—one for each
screen—in the format that the signs expect.

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 17/25

To display a single frame of the video, Carla needs to send a request to all the
screens at once. But she also needs to wait for the result of these requests,
both in order to not start sending the next frame before the current one has
been properly sent, and in order to notice when requests are failing.

Promise has a static method all that can be used to convert an array of
promises into a single promise that resolves to an array of results. This
provides a convenient way to have some asynchronous actions happen
alongside each other, wait for them all to finish, and then do something with
their results (or at least wait for them to make sure they don’t fail).

function displayFrame(frame) {
 return Promise.all(frame.map((data, i) => {

 return request(screenAddresses[i], {
 command: "display",
 data
 });

 }));
}

This maps over the images in frame (which is an array of display data arrays)
to create an array of request promises. It then returns a promise that
combines all of those.

In order to be able to stop a playing video, the process is wrapped in a class.
This class has an asynchronous play method that returns a promise that only
resolves when the playback is stopped again via the stop method.

function wait(time) {

 return new Promise(accept => setTimeout(accept, time));
}

class VideoPlayer {
 constructor(frames, frameTime) {
 this.frames = frames;
 this.frameTime = frameTime;

 this.stopped = true;
 }

 async play() {
 this.stopped = false;

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 18/25

 for (let i = 0; !this.stopped; i++) {
 let nextFrame = wait(this.frameTime);

 await displayFrame(this.frames[i % this.frames.length]);
 await nextFrame;
 }
 }

 stop() {
 this.stopped = true;

 }
}

The wait function wraps setTimeout in a promise that resolves after the
given amount of milliseconds. This is useful for controlling the speed of the
playback.

let video = new VideoPlayer(clipImages, 100);

video.play().catch(e => {
 console.log("Playback failed: " + e);
});
setTimeout(() => video.stop(), 15000);

For the entire week that the screen wall stands, every evening, when it is dark,
a huge glowing orange bird mysteriously appears on it.

The event loop

An asynchronous program starts by running its main script, which will often
set up callbacks to be called later. That main script, as well as the callbacks,
run to completion in one piece, uninterrupted. But between them, the
program may sit idle, waiting for something to happen.

So callbacks are not directly called by the code that scheduled them. If I call
setTimeout from within a function, that function will have returned by the
time the callback function is called. And when the callback returns, control
does not go back to the function that scheduled it.

Asynchronous behavior happens on its own empty function call stack. This is
one of the reasons that, without promises, managing exceptions across

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 19/25

asynchronous code is so hard. Since each callback starts with a mostly empty
stack, your catch handlers won’t be on the stack when they throw an
exception.

try {
 setTimeout(() => {

 throw new Error("Woosh");
 }, 20);
} catch (e) {
 // This will not run

 console.log("Caught", e);
}

No matter how closely together events—such as timeouts or incoming
requests—happen, a JavaScript environment will run only one program at a
time. You can think of this as it running a big loop around your program,
called the event loop. When there’s nothing to be done, that loop is paused.
But as events come in, they are added to a queue, and their code is executed
one after the other. Because no two things run at the same time, slow-running
code can delay the handling of other events.

This example sets a timeout but then dallies until after the timeout’s intended
point of time, causing the timeout to be late.

let start = Date.now();

setTimeout(() => {
 console.log("Timeout ran at", Date.now() - start);
}, 20);

while (Date.now() < start + 50) {}
console.log("Wasted time until", Date.now() - start);
// → Wasted time until 50
// → Timeout ran at 55

Promises always resolve or reject as a new event. Even if a promise is already
resolved, waiting for it will cause your callback to run after the current script
finishes, rather than right away.

Promise.resolve("Done").then(console.log);
console.log("Me first!");

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 20/25

// → Me first!
// → Done

In later chapters we’ll see various other types of events that run on the event
loop.

Asynchronous bugs

When your program runs synchronously, in a single go, there are no state
changes happening except those that the program itself makes. For
asynchronous programs this is different—they may have gaps in their
execution during which other code can run.

Let’s look at an example. This is a function that tries to report the size of each
file in an array of files, making sure to read them all at the same time rather
than in sequence.

async function fileSizes(files) {
 let list = "";

 await Promise.all(files.map(async fileName => {
 list += fileName + ": " +
 (await textFile(fileName)).length + "\n";
 }));

 return list;
}

The async fileName => part shows how arrow functions can also be made
async by putting the word async in front of them.

The code doesn’t immediately look suspicious... it maps the async arrow
function over the array of names, creating an array of promises, and then uses
Promise.all to wait for all of these before returning the list they build up.

But this program is entirely broken. It’ll always return only a single line of
output, listing the file that took the longest to read.

fileSizes(["plans.txt", "shopping_list.txt"])

 .then(console.log);

Can you work out why?

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 21/25

The problem lies in the += operator, which takes the current value of list at
the time where the statement starts executing and then, when the await
finishes, sets the list binding to be that value plus the added string.

But between the time where the statement starts executing and the time
where it finishes there’s an asynchronous gap. The map expression runs
before anything has been added to the list, so each of the += operators starts
from an empty string and ends up, when its storage retrieval finishes, setting
list to the result of adding its line to the empty string.

This could have easily been avoided by returning the lines from the mapped
promises and calling join on the result of Promise.all , instead of building
up the list by changing a binding. As usual, computing new values is less
error-prone than changing existing values.

async function fileSizes(files) {
 let lines = files.map(async fileName => {

 return fileName + ": " +
 (await textFile(fileName)).length;
 });
 return (await Promise.all(lines)).join("\n");

}

Mistakes like this are easy to make, especially when using await , and you
should be aware of where the gaps in your code occur. An advantage of
JavaScript’s explicit asynchronicity (whether through callbacks, promises, or
await) is that spotting these gaps is relatively easy.

Summary

Asynchronous programming makes it possible to express waiting for long-
running actions without freezing the whole program. JavaScript
environments typically implement this style of programming using callbacks,
functions that are called when the actions complete. An event loop schedules
such callbacks to be called when appropriate, one after the other, so that their
execution does not overlap.

Programming asynchronously is made easier by promises, objects that
represent actions that might complete in the future, and async functions,

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 22/25

which allow you to write an asynchronous program as if it were synchronous.

Exercises

Quiet Times

There’s a security camera near Carla’s lab that’s activated by a motion sensor.
It is connected to the network and starts sending out a video stream when it is
active. Because she’d rather not be discovered, Carla has set up a system that
notices this kind of wireless network traffic and turns on a light in her lair
whenever there is activity outside, so she knows when to keep quiet.

She’s also been logging the times at which the camera is tripped for a while
and wants to use this information to visualize which times, in an average
week, tend to be quiet, and which tend to be busy. The log is stored in files
holding one time stamp number (as returned by Date.now()) per line.

1695709940692

1695701068331
1695701189163

The "camera_logs.txt" file holds a list of log files. Write an asynchronous
function activityTable(day) that for a given day of the week returns an
array of 24 numbers, one for each hour of the day, that hold the number of
camera network traffic observations seen in that hour of the day. Days are
identified by number using the system used by Date.getDay , where Sunday
is 0 and Saturday is 6.

The activityGraph function, provided by the sandbox, summarizes such a
table into a string.

To read the files, use the textFile function defined earlier—given a
filename, it returns a promise that resolves to the file’s content. Remember
that new Date(timestamp) creates a Date object for that time, which has
getDay and getHours methods returning the day of the week and the hour of
the day.

Both types of files—the list of log files and the log files themselves—have each
piece of data on its own line, separated by newline ("\n") characters.

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 23/25

async function activityTable(day) {
 let logFileList = await textFile("camera_logs.txt");

 // Your code here
}

activityTable(1)

 .then(table => console.log(activityGraph(table)));

Display hints...

Real Promises

Rewrite the function from the previous exercise without async/await , using
plain Promise methods.

function activityTable(day) {
 // Your code here

}

activityTable(6)

 .then(table => console.log(activityGraph(table)));

In this style, using Promise.all will be more convenient than trying to
model a loop over the log files. In the async function, just using await in a
loop is simpler. If reading a file takes some time, which of these two
approaches will take the least time to run?

If one of the files listed in the file list has a typo, and reading it fails, how does
that failure end up in the Promise object that your function returns?

Display hints...

Building Promise.all

As we saw, given an array of promises, Promise.all returns a promise that
waits for all of the promises in the array to finish. It then succeeds, yielding an
array of result values. If a promise in the array fails, the promise returned by
all fails too, passing on the failure reason from the failing promise.

Implement something like this yourself as a regular function called
Promise_all .

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 24/25

Remember that after a promise has succeeded or failed, it can’t succeed or fail
again, and further calls to the functions that resolve it are ignored. This can
simplify the way you handle failure of your promise.

function Promise_all(promises) {
 return new Promise((resolve, reject) => {

 // Your code here.
 });
}

// Test code.
Promise_all([]).then(array => {
 console.log("This should be []:", array);

});
function soon(val) {
 return new Promise(resolve => {

 setTimeout(() => resolve(val), Math.random() * 500);
 });
}
Promise_all([soon(1), soon(2), soon(3)]).then(array => {

 console.log("This should be [1, 2, 3]:", array);
});
Promise_all([soon(1), Promise.reject("X"), soon(3)])

 .then(array => {
 console.log("We should not get here");
 })

 .catch(error => {
 if (error != "X") {
 console.log("Unexpected failure:", error);
 }

 });

Display hints...
◂ ● ▸ ?

27/06/2024, 18:46 Asynchronous Programming :: Eloquent JavaScript

https://eloquentjavascript.net/11_async.html 25/25

https://eloquentjavascript.net/10_modules.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/12_language.html

