
◂ ● ▸ ?
Modules

Ideally, a program has a clear, straightforward structure. The way it works is
easy to explain, and each part plays a well-defined role.

In practice, programs grow organically. Pieces of functionality are added as
the programmer identifies new needs. Keeping such a program well-
structured requires constant attention and work. This is work that will pay off
only in the future, the next time someone works on the program, so it’s
tempting to neglect it and allow the various parts of the program to become
deeply entangled.

This causes two practical issues. First, understanding an entangled system is
hard. If everything can touch everything else, it is difficult to look at any given
piece in isolation. You are forced to build up a holistic understanding of the
entire thing. Second, if you want to use any of the functionality from such a
program in another situation, rewriting it may be easier than trying to
disentangle it from its context.

Write code that is easy to delete, not easy to extend.”“

Tef, Programming is Terrible—

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 1/15

https://eloquentjavascript.net/09_regexp.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/11_async.html

The phrase “big ball of mud” is often used for such large, structureless
programs. Everything sticks together, and when you try to pick out a piece,
the whole thing comes apart, and you only succeed in making a mess.

Modular programs

Modules are an attempt to avoid these problems. A module is a piece of
program that specifies which other pieces it relies on and which functionality
it provides for other modules to use (its interface).

Module interfaces have a lot in common with object interfaces, as we saw
them in Chapter 6. They make part of the module available to the outside
world and keep the rest private.

But the interface that a module provides for others to use is only half the
story. A good module system also requires modules to specify which code they
use from other modules. These relations are called dependencies. If module A
uses functionality from module B, it is said to depend on that module. When
these are clearly specified in the module itself, they can be used to figure out
which other modules need to be present to be able to use a given module and
to automatically load dependencies.

When the ways in which modules interact with each other are explicit, a
system becomes more like LEGO, where pieces interact through well-defined
connectors, and less like mud, where everything mixes with everything else.

ES modules

The original JavaScript language did not have any concept of a module. All
scripts ran in the same scope, and accessing a function defined in another
script was done by referencing the global bindings created by that script. This
actively encouraged accidental, hard-to-see entanglement of code and invited
problems like unrelated scripts trying to use the same binding name.

Since ECMAScript 2015, JavaScript supports two different types of programs.
Scripts behave in the old way: their bindings are defined in the global scope,
and they have no way to directly reference other scripts. Modules get their
own separate scope and support the import and export keywords, which

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 2/15

https://eloquentjavascript.net/06_object.html#interface

aren’t available in scripts, to declare their dependencies and interface. This
module system is usually called ES modules (where ES stands for
ECMAScript).

A modular program is composed of a number of such modules, wired together
via their imports and exports.

The following example module converts between day names and numbers (as
returned by Date ’s getDay method). It defines a constant that is not part of
its interface, and two functions that are. It has no dependencies.

const names = ["Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"];

export function dayName(number) {
 return names[number];
}

export function dayNumber(name) {
 return names.indexOf(name);
}

The export keyword can be put in front of a function, class, or binding
definition to indicate that that binding is part of the module’s interface. This
makes it possible for other modules to use that binding by importing it.

import {dayName} from "./dayname.js";
let now = new Date();
console.log(`Today is ${dayName(now.getDay())}`);

// → Today is Monday

The import keyword, followed by a list of binding names in braces, makes
bindings from another module available in the current module. Modules are
identified by quoted strings.

How such a module name is resolved to an actual program differs by
platform. The browser treats them as web addresses, whereas Node.js
resolves them to files. When you run a module, all the other modules it
depends on—and the modules those depend on—are loaded, and the exported
bindings are made available to the modules that import them.

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 3/15

Import and export declarations cannot appear inside of functions, loops, or
other blocks. They are immediately resolved when the module is loaded,
regardless of how the code in the module executes. To reflect this, they must
appear only in the outer module body.

A module’s interface thus consists of a collection of named bindings, which
other modules that depend on the module can access. Imported bindings can
be renamed to give them a new local name using as after their name.

import {dayName as nomDeJour} from "./dayname.js";
console.log(nomDeJour(3));

// → Wednesday

A module may also have a special export named default , which is often used
for modules that only export a single binding. To define a default export, you
write export default before an expression, a function declaration, or a class
declaration.

export default ["Winter", "Spring", "Summer", "Autumn"];

Such a binding is imported by omitting the braces around the name of the
import.

import seasonNames from "./seasonname.js";

To import all bindings from a module at the same time, you can use import
* . You provide a name, and that name will be bound to an object holding all
the module’s exports. This can be useful when you are using a lot of different
exports.

import * as dayName from "./dayname.js";

console.log(dayName.dayName(3));
// → Wednesday

Packages

One of the advantages of building a program out of separate pieces and being
able to run some of those pieces on their own is that you might be able to use
the same piece in different programs.

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 4/15

But how do you set this up? Say I want to use the parseINI function from
Chapter 9 in another program. If it is clear what the function depends on (in
this case, nothing), I can just copy that module into my new project and use it.
But then, if I find a mistake in the code, I’ll probably fix it in whichever
program I’m working with at the time and forget to also fix it in the other
program.

Once you start duplicating code, you’ll quickly find yourself wasting time and
energy moving copies around and keeping them up to date. That’s where
packages come in. A package is a chunk of code that can be distributed
(copied and installed). It may contain one or more modules and has
information about which other packages it depends on. A package also usually
comes with documentation explaining what it does so that people who didn’t
write it might still be able to use it.

When a problem is found in a package or a new feature is added, the package
is updated. Now the programs that depend on it (which may also be packages)
can copy the new version to get the improvements that were made to the code.

Working in this way requires infrastructure. We need a place to store and find
packages and a convenient way to install and upgrade them. In the JavaScript
world, this infrastructure is provided by NPM (https://npmjs.org).

NPM is two things: an online service where you can download (and upload)
packages, and a program (bundled with Node.js) that helps you install and
manage them.

At the time of writing, there are more than three million different packages
available on NPM. A large portion of those are rubbish, to be fair. But almost
every useful, publicly available JavaScript package can be found on NPM. For
example, an INI file parser, similar to the one we built in Chapter 9, is
available under the package name ini .

Chapter 20 will show how to install such packages locally using the npm
command line program.

Having quality packages available for download is extremely valuable. It
means that we can often avoid reinventing a program that 100 people have

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 5/15

https://eloquentjavascript.net/09_regexp.html#ini
https://npmjs.org/
https://eloquentjavascript.net/09_regexp.html
https://eloquentjavascript.net/20_node.html

written before and get a solid, well-tested implementation at the press of a
few keys.

Software is cheap to copy, so once someone has written it, distributing it to
other people is an efficient process. Writing it in the first place is work,
though, and responding to people who have found problems in the code or
who want to propose new features is even more work.

By default, you own the copyright to the code you write, and other people may
use it only with your permission. But because some people are just nice and
because publishing good software can help make you a little bit famous
among programmers, many packages are published under a license that
explicitly allows other people to use it.

Most code on NPM is licensed this way. Some licenses require you to also
publish code that you build on top of the package under the same license.
Others are less demanding, requiring only that you keep the license with the
code as you distribute it. The JavaScript community mostly uses the latter
type of license. When using other people’s packages, make sure you are aware
of their licenses.

Now, instead of writing our own INI file parser, we can use one from NPM.

import {parse} from "ini";

console.log(parse("x = 10\ny = 20"));
// → {x: "10", y: "20"}

CommonJS modules

Before 2015, when the JavaScript language had no built-in module system,
people were already building large systems in JavaScript. To make that
workable, they needed modules.

The community designed its own improvised module systems on top of the
language. These use functions to create a local scope for the modules and
regular objects to represent module interfaces.

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 6/15

Initially, people just manually wrapped their entire module in an
“immediately invoked function expression” to create the module’s scope and
assigned their interface objects to a single global variable.

const weekDay = function() {
 const names = ["Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"];
 return {
 name(number) { return names[number]; },
 number(name) { return names.indexOf(name); }

 };
}();

console.log(weekDay.name(weekDay.number("Sunday")));
// → Sunday

This style of modules provides isolation, to a certain degree, but it does not
declare dependencies. Instead, it just puts its interface into the global scope
and expects its dependencies, if any, to do the same. This is not ideal.

If we implement our own module loader, we can do better. The most widely
used approach to bolted-on JavaScript modules is called CommonJS
modules. Node.js used this module system from the start (though it now also
knows how to load ES modules), and it is the module system used by many
packages on NPM.

A CommonJS module looks like a regular script, but it has access to two
bindings that it uses to interact with other modules. The first is a function
called require . When you call this with the module name of your
dependency, it makes sure the module is loaded and returns its interface. The
second is an object named exports , which is the interface object for the
module. It starts out empty and you add properties to it to define exported
values.

This CommonJS example module provides a date-formatting function. It uses
two packages from NPM—ordinal to convert numbers to strings like "1st"
and "2nd" , and date-names to get the English names for weekdays and
months. It exports a single function, formatDate , which takes a Date object
and a template string.

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 7/15

The template string may contain codes that direct the format, such as YYYY
for the full year and Do for the ordinal day of the month. You could give it a
string like "MMMM Do YYYY" to get output like November 22nd 2017 .

const ordinal = require("ordinal");
const {days, months} = require("date-names");

exports.formatDate = function(date, format) {
 return format.replace(/YYYY|M(MMM)?|Do?|dddd/g, tag => {
 if (tag == "YYYY") return date.getFullYear();

 if (tag == "M") return date.getMonth();
 if (tag == "MMMM") return months[date.getMonth()];
 if (tag == "D") return date.getDate();

 if (tag == "Do") return ordinal(date.getDate());
 if (tag == "dddd") return days[date.getDay()];
 });

};

The interface of ordinal is a single function, whereas date-names exports
an object containing multiple things—days and months are arrays of names.
Destructuring is very convenient when creating bindings for imported
interfaces.

The module adds its interface function to exports so that modules that
depend on it get access to it. We could use the module like this:

const {formatDate} = require("./format-date.js");

console.log(formatDate(new Date(2017, 9, 13),

 "dddd the Do"));
// → Friday the 13th

CommonJS is implemented with a module loader that, when loading a
module, wraps its code in a function (giving it its own local scope), and passes
the require and exports bindings to that function as arguments.

If we assume we have access to a readFile function that reads a file by name
and gives us its content, we can define a simplified form of require like this:

function require(name) {

 if (!(name in require.cache)) {

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 8/15

 let code = readFile(name);
 let exports = require.cache[name] = {};

 let wrapper = Function("require, exports", code);
 wrapper(require, exports);
 }
 return require.cache[name];

}
require.cache = Object.create(null);

Function is a built-in JavaScript function that takes a list of arguments (as a
comma-separated string) and a string containing the function body and
returns a function value with those arguments and that body. This is an
interesting concept—it allows a program to create new pieces of program from
string data—but also a dangerous one, since if someone can trick your
program into putting a string they provide into Function , they can make the
program do anything they want.

Standard JavaScript provides no such function as readFile , but different
JavaScript environments, such as the browser and Node.js, provide their own
ways of accessing files. The example just pretends that readFile exists.

To avoid loading the same module multiple times, require keeps a store
(cache) of already loaded modules. When called, it first checks if the
requested module has been loaded and, if not, loads it. This involves reading
the module’s code, wrapping it in a function, and calling it.

By defining require , exports as parameters for the generated wrapper
function (and passing the appropriate values when calling it), the loader
makes sure that these bindings are available in the module’s scope.

An important difference between this system and ES modules is that ES
module imports happen before a module’s script starts running, whereas
require is a normal function, invoked when the module is already running.
Unlike import declarations, require calls can appear inside functions, and
the name of the dependency can be any expression that evaluates to a string,
whereas import only allows plain quoted strings.

The transition of the JavaScript community from CommonJS style to ES
modules has been a slow and somewhat rough one. Fortunately we are now at

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 9/15

a point where most of the popular packages on NPM provide their code as ES
modules, and Node.js allows ES modules to import from CommonJS
modules. While CommonJS code is still something you will run across, there
is no real reason to write new programs in this style anymore.

Building and bundling

Many JavaScript packages aren’t technically written in JavaScript. Language
extensions such as TypeScript, the type checking dialect mentioned in
Chapter 8, are widely used. People also often start using planned new
language features long before they have been added to the platforms that
actually run JavaScript. To make this possible, they compile their code,
translating it from their chosen JavaScript dialect to plain old JavaScript—or
even to a past version of JavaScript—so that browsers can run it.

Including a modular program that consists of 200 different files in a web page
produces its own problems. If fetching a single file over the network takes 50
milliseconds, loading the whole program takes 10 seconds, or maybe half that
if you can load several files simultaneously. That’s a lot of wasted time.
Because fetching a single big file tends to be faster than fetching a lot of tiny
ones, web programmers have started using tools that combine their programs
(which they painstakingly split into modules) into a single big file before they
publish it to the web. Such tools are called bundlers.

And we can go further. Apart from the number of files, the size of the files also
determines how fast they can be transferred over the network. Thus, the
JavaScript community has invented minifiers. These are tools that take a
JavaScript program and make it smaller by automatically removing
comments and whitespace, renaming bindings, and replacing pieces of code
with equivalent code that take up less space.

It is not uncommon for the code that you find in an NPM package or that runs
on a web page to have gone through multiple stages of transformation—
converting from modern JavaScript to historic JavaScript, combining the
modules into a single file, and minifying the code. We won’t go into the details
of these tools in this book since there are many of them, and which one is
popular changes regularly. Just be aware that such things exist, and look them
up when you need them.

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 10/15

https://eloquentjavascript.net/08_error.html#typing

Module design

Structuring programs is one of the subtler aspects of programming. Any
nontrivial piece of functionality can be organized in various ways.

Good program design is subjective—there are trade-offs involved, and matters
of taste. The best way to learn the value of well-structured design is to read or
work on a lot of programs and notice what works and what doesn’t. Don’t
assume that a painful mess is “just the way it is”. You can improve the
structure of almost everything by putting more thought into it.

One aspect of module design is ease of use. If you are designing something
that is intended to be used by multiple people—or even by yourself, in three
months when you no longer remember the specifics of what you did—it is
helpful if your interface is simple and predictable.

That may mean following existing conventions. A good example is the ini
package. This module imitates the standard JSON object by providing parse
and stringify (to write an INI file) functions, and, like JSON , converts
between strings and plain objects. The interface is small and familiar, and
after you’ve worked with it once, you’re likely to remember how to use it.

Even if there’s no standard function or widely used package to imitate, you
can keep your modules predictable by using simple data structures and doing
a single, focused thing. Many of the INI-file parsing modules on NPM provide
a function that directly reads such a file from the hard disk and parses it, for
example. This makes it impossible to use such modules in the browser, where
we don’t have direct file system access, and adds complexity that would have
been better addressed by composing the module with some file-reading
function.

This points to another helpful aspect of module design—the ease with which
something can be composed with other code. Focused modules that compute
values are applicable in a wider range of programs than bigger modules that
perform complicated actions with side effects. An INI file reader that insists
on reading the file from disk is useless in a scenario where the file’s content
comes from some other source.

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 11/15

Relatedly, stateful objects are sometimes useful or even necessary, but if
something can be done with a function, use a function. Several of the INI file
readers on NPM provide an interface style that requires you to first create an
object, then load the file into your object, and finally use specialized methods
to get at the results. This type of thing is common in the object-oriented
tradition, and it’s terrible. Instead of making a single function call and moving
on, you have to perform the ritual of moving your object through its various
states. And because the data is now wrapped in a specialized object type, all
code that interacts with it has to know about that type, creating unnecessary
interdependencies.

Often, defining new data structures can’t be avoided—only a few basic ones
are provided by the language standard, and many types of data have to be
more complex than an array or a map. But when an array suffices, use an
array.

An example of a slightly more complex data structure is the graph from
Chapter 7. There is no single obvious way to represent a graph in JavaScript.
In that chapter, we used an object whose properties hold arrays of strings—
the other nodes reachable from that node.

There are several different pathfinding packages on NPM, but none of them
uses this graph format. They usually allow the graph’s edges to have a weight,
which is the cost or distance associated with it. That isn’t possible in our
representation.

For example, there’s the dijkstrajs package. A well-known approach to
pathfinding, quite similar to our findRoute function, is called Dijkstra’s
algorithm, after Edsger Dijkstra, who first wrote it down. The js suffix is
often added to package names to indicate the fact that they are written in
JavaScript. This dijkstrajs package uses a graph format similar to ours, but
instead of arrays, it uses objects whose property values are numbers—the
weights of the edges.

If we wanted to use that package, we’d have to make sure that our graph was
stored in the format it expects. All edges get the same weight since our
simplified model treats each road as having the same cost (one turn).

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 12/15

https://eloquentjavascript.net/07_robot.html

const {find_path} = require("dijkstrajs");

let graph = {};
for (let node of Object.keys(roadGraph)) {
 let edges = graph[node] = {};
 for (let dest of roadGraph[node]) {

 edges[dest] = 1;
 }
}

console.log(find_path(graph, "Post Office", "Cabin"));
// → ["Post Office", "Alice's House", "Cabin"]

This can be a barrier to composition—when various packages are using
different data structures to describe similar things, combining them is
difficult. Therefore, if you want to design for composability, find out what
data structures other people are using and, when possible, follow their
example.

Designing a fitting module structure for a program can be difficult. In the
phase where you are still exploring the problem, trying different things to see
what works, you might want to not worry about it too much since keeping
everything organized can be a big distraction. Once you have something that
feels solid, that’s a good time to take a step back and organize it.

Summary

Modules provide structure to bigger programs by separating the code into
pieces with clear interfaces and dependencies. The interface is the part of the
module that’s visible to other modules, and the dependencies are the other
modules it makes use of.

Because JavaScript historically did not provide a module system, the
CommonJS system was built on top of it. Then at some point it did get a built-
in system, which now coexists uneasily with the CommonJS system.

A package is a chunk of code that can be distributed on its own. NPM is a
repository of JavaScript packages. You can download all kinds of useful (and
useless) packages from it.

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 13/15

Exercises

A modular robot

These are the bindings that the project from Chapter 7 creates:

roads

buildGraph
roadGraph
VillageState

runRobot
randomPick
randomRobot
mailRoute

routeRobot
findRoute
goalOrientedRobot

If you were to write that project as a modular program, what modules would
you create? Which module would depend on which other module, and what
would their interfaces look like?

Which pieces are likely to be available prewritten on NPM? Would you prefer
to use an NPM package or write them yourself?

Display hints...

Roads module

Write an ES module based on the example from Chapter 7 that contains the
array of roads and exports the graph data structure representing them as
roadGraph . It depends on a module ./graph.js that exports a function
buildGraph , used to build the graph. This function expects an array of two-
element arrays (the start and end points of the roads).

// Add dependencies and exports

const roads = [

 "Alice's House-Bob's House", "Alice's House-Cabin",
 "Alice's House-Post Office", "Bob's House-Town Hall",
 "Daria's House-Ernie's House", "Daria's House-Town Hall",

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 14/15

https://eloquentjavascript.net/07_robot.html
https://eloquentjavascript.net/07_robot.html

 "Ernie's House-Grete's House", "Grete's House-Farm",
 "Grete's House-Shop", "Marketplace-Farm",

 "Marketplace-Post Office", "Marketplace-Shop",
 "Marketplace-Town Hall", "Shop-Town Hall"
];

Display hints...

Circular dependencies

A circular dependency is a situation where module A depends on B, and B
also, directly or indirectly, depends on A. Many module systems simply forbid
this because whichever order you choose for loading such modules, you
cannot make sure that each module’s dependencies have been loaded before it
runs.

CommonJS modules allow a limited form of cyclic dependencies. As long as
the modules don’t access each other’s interface until after they finish loading,
cyclic dependencies are okay.

The require function given earlier in this chapter supports this type of
dependency cycle. Can you see how it handles cycles?

Display hints...
◂ ● ▸ ?

27/06/2024, 18:46 Modules :: Eloquent JavaScript

https://eloquentjavascript.net/10_modules.html 15/15

https://eloquentjavascript.net/09_regexp.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/11_async.html

