
◂ ● ▸ ?
Values, Types, and Operators

In the computer’s world, there is only data. You can read data, modify data,
create new data—but that which isn’t data cannot be mentioned. All this data
is stored as long sequences of bits and is thus fundamentally alike.

Bits are any kind of two-valued things, usually described as zeros and ones.
Inside the computer, they take forms such as a high or low electrical charge, a
strong or weak signal, or a shiny or dull spot on the surface of a CD. Any piece
of discrete information can be reduced to a sequence of zeros and ones and
thus represented in bits.

For example, we can express the number 13 in bits. This works the same way
as a decimal number, but instead of 10 different digits, we have only 2, and
the weight of each increases by a factor of 2 from right to left. Here are the
bits that make up the number 13, with the weights of the digits shown below
them:

Below the surface of the machine, the program moves. Without effort, it expands and
contracts. In great harmony, electrons scatter and regroup. The forms on the
monitor are but ripples on the water. The essence stays invisibly below.”

“ ¶

Master Yuan-Ma, The Book of Programming—

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 1/14

https://eloquentjavascript.net/00_intro.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/02_program_structure.html

 0 0 0 0 1 1 0 1
 128 64 32 16 8 4 2 1

That’s the binary number 00001101. Its nonzero digits stand for 8, 4, and 1,
and add up to 13.

Values

Imagine a sea of bits—an ocean of them. A typical modern computer has more
than 100 billion bits in its volatile data storage (working memory).
Nonvolatile storage (the hard disk or equivalent) tends to have yet a few
orders of magnitude more.

To be able to work with such quantities of bits without getting lost, we
separate them into chunks that represent pieces of information. In a
JavaScript environment, those chunks are called values. Though all values are
made of bits, they play different roles. Every value has a type that determines
its role. Some values are numbers, some values are pieces of text, some values
are functions, and so on.

To create a value, you must merely invoke its name. This is convenient. You
don’t have to gather building material for your values or pay for them. You
just call for one, and whoosh, you have it. Of course, values are not really
created from thin air. Each one has to be stored somewhere, and if you want
to use a gigantic number of them at the same time, you might run out of
computer memory. Fortunately, this is a problem only if you need them all
simultaneously. As soon as you no longer use a value, it will dissipate, leaving
behind its bits to be recycled as building material for the next generation of
values.

The remainder of this chapter introduces the atomic elements of JavaScript
programs, that is, the simple value types and the operators that can act on
such values.

Numbers

Values of the number type are, unsurprisingly, numeric values. In a
JavaScript program, they are written as follows:

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 2/14

13

Using that in a program will cause the bit pattern for the number 13 to come
into existence inside the computer’s memory.

JavaScript uses a fixed number of bits, 64 of them, to store a single number
value. There are only so many patterns you can make with 64 bits, which
limits the number of different numbers that can be represented. With N
decimal digits, you can represent 10N numbers. Similarly, given 64 binary
digits, you can represent 264 different numbers, which is about 18 quintillion
(an 18 with 18 zeros after it). That’s a lot.

Computer memory used to be much smaller, and people tended to use groups
of 8 or 16 bits to represent their numbers. It was easy to accidentally overflow
such small numbers—to end up with a number that did not fit into the given
number of bits. Today, even computers that fit in your pocket have plenty of
memory, so you are free to use 64-bit chunks, and you need to worry about
overflow only when dealing with truly astronomical numbers.

Not all whole numbers less than 18 quintillion fit in a JavaScript number,
though. Those bits also store negative numbers, so one bit indicates the sign
of the number. A bigger issue is representing nonwhole numbers. To do this,
some of the bits are used to store the position of the decimal point. The actual
maximum whole number that can be stored is more in the range of 9
quadrillion (15 zeros)—which is still pleasantly huge.

Fractional numbers are written using a dot:

9.81

For very big or very small numbers, you may also use scientific notation by
adding an e (for exponent), followed by the exponent of the number.

2.998e8

That’s 2.998 × 108 = 299,800,000.

Calculations with whole numbers (also called integers) that are smaller than
the aforementioned 9 quadrillion are guaranteed to always be precise.

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 3/14

Unfortunately, calculations with fractional numbers are generally not. Just as
π (pi) cannot be precisely expressed by a finite number of decimal digits,
many numbers lose some precision when only 64 bits are available to store
them. This is a shame, but it causes practical problems only in specific
situations. The important thing is to be aware of it and treat fractional digital
numbers as approximations, not as precise values.

Arithmetic

The main thing to do with numbers is arithmetic. Arithmetic operations such
as addition or multiplication take two number values and produce a new
number from them. Here is what they look like in JavaScript:

100 + 4 * 11

The + and * symbols are called operators. The first stands for addition and
the second stands for multiplication. Putting an operator between two values
will apply it to those values and produce a new value.

Does this example mean “Add 4 and 100, and multiply the result by 11”, or is
the multiplication done before the adding? As you might have guessed, the
multiplication happens first. As in mathematics, you can change this by
wrapping the addition in parentheses.

(100 + 4) * 11

For subtraction, there is the - operator. Division can be done with the /
operator.

When operators appear together without parentheses, the order in which they
are applied is determined by the precedence of the operators. The example
shows that multiplication comes before addition. The / operator has the same
precedence as * . Likewise, + and - have the same precedence. When
multiple operators with the same precedence appear next to each other, as in
1 - 2 + 1 , they are applied left to right: (1 - 2) + 1 .

Don’t worry too much about these precedence rules. When in doubt, just add
parentheses.

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 4/14

There is one more arithmetic operator, which you might not immediately
recognize. The % symbol is used to represent the remainder operation. X % Y
is the remainder of dividing X by Y . For example, 314 % 100 produces 14 ,
and 144 % 12 gives 0 . The remainder operator’s precedence is the same as
that of multiplication and division. You’ll also often see this operator referred
to as modulo.

Special numbers

There are three special values in JavaScript that are considered numbers but
don’t behave like normal numbers. The first two are Infinity and -
Infinity , which represent the positive and negative infinities. Infinity -
1 is still Infinity , and so on. Don’t put too much trust in infinity-based
computation, though. It isn’t mathematically sound, and it will quickly lead to
the next special number: NaN .

NaN stands for “not a number”, even though it is a value of the number type.
You’ll get this result when you, for example, try to calculate 0 / 0 (zero
divided by zero), Infinity - Infinity , or any number of other numeric
operations that don’t yield a meaningful result.

Strings

The next basic data type is the string. Strings are used to represent text. They
are written by enclosing their content in quotes.

`Down on the sea`

"Lie on the ocean"
'Float on the ocean'

You can use single quotes, double quotes, or backticks to mark strings, as long
as the quotes at the start and the end of the string match.

You can put almost anything between quotes to have JavaScript make a string
value out of it. But a few characters are more difficult. You can imagine how
putting quotes between quotes might be hard, since they will look like the end
of the string. Newlines (the characters you get when you press enter) can be
included only when the string is quoted with backticks (`).

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 5/14

To make it possible to include such characters in a string, the following
notation is used: a backslash (\) inside quoted text indicates that the
character after it has a special meaning. This is called escaping the character.
A quote that is preceded by a backslash will not end the string but be part of
it. When an n character occurs after a backslash, it is interpreted as a newline.
Similarly, a t after a backslash means a tab character. Take the following
string:

"This is the first line\nAnd this is the second"

This is the actual text in that string:

This is the first line

And this is the second

There are, of course, situations where you want a backslash in a string to be
just a backslash, not a special code. If two backslashes follow each other, they
will collapse together, and only one will be left in the resulting string value.
This is how the string “A newline character is written like "\n" .” can be
expressed:

"A newline character is written like \"\\n\"."

Strings, too, have to be modeled as a series of bits to be able to exist inside the
computer. The way JavaScript does this is based on the Unicode standard.
This standard assigns a number to virtually every character you would ever
need, including characters from Greek, Arabic, Japanese, Armenian, and so
on. If we have a number for every character, a string can be described by a
sequence of numbers. And that’s what JavaScript does.

There’s a complication though: JavaScript’s representation uses 16 bits per
string element, which can describe up to 216 different characters. However,
Unicode defines more characters than that—about twice as many, at this
point. So some characters, such as many emoji, take up two “character
positions” in JavaScript strings. We’ll come back to this in Chapter 5.

Strings cannot be divided, multiplied, or subtracted. The + operator can be
used on them, not to add, but to concatenate—to glue two strings together.

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 6/14

https://eloquentjavascript.net/05_higher_order.html#code_units

The following line will produce the string "concatenate" :

"con" + "cat" + "e" + "nate"

String values have a number of associated functions (methods) that can be
used to perform other operations on them. I’ll say more about these in
Chapter 4.

Strings written with single or double quotes behave very much the same—the
only difference lies in which type of quote you need to escape inside of them.
Backtick-quoted strings, usually called template literals, can do a few more
tricks. Apart from being able to span lines, they can also embed other values.

`half of 100 is ${100 / 2}`

When you write something inside ${} in a template literal, its result will be
computed, converted to a string, and included at that position. This example
produces the string "half of 100 is 50" .

Unary operators

Not all operators are symbols. Some are written as words. One example is the
typeof operator, which produces a string value naming the type of the value
you give it.

console.log(typeof 4.5)
// → number
console.log(typeof "x")
// → string

We will use console.log in example code to indicate that we want to see the
result of evaluating something. (More about that in the next chapter.)

The other operators shown so far in this chapter all operated on two values,
but typeof takes only one. Operators that use two values are called binary
operators, while those that take one are called unary operators. The minus
operator (-) can be used both as a binary operator and as a unary operator.

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 7/14

https://eloquentjavascript.net/04_data.html#methods
https://eloquentjavascript.net/02_program_structure.html

console.log(- (10 - 2))
// → -8

Boolean values

It is often useful to have a value that distinguishes between only two
possibilities, like “yes” and “no” or “on” and “off”. For this purpose, JavaScript
has a Boolean type, which has just two values, true and false, written as those
words.

Comparison

Here is one way to produce Boolean values:

console.log(3 > 2)
// → true
console.log(3 < 2)
// → false

The > and < signs are the traditional symbols for “is greater than” and “is less
than”, respectively. They are binary operators. Applying them results in a
Boolean value that indicates whether they hold true in this case.

Strings can be compared in the same way.

console.log("Aardvark" < "Zoroaster")
// → true

The way strings are ordered is roughly alphabetic but not really what you’d
expect to see in a dictionary: uppercase letters are always “less” than
lowercase ones, so "Z" < "a" , and nonalphabetic characters (!, -, and so on)
are also included in the ordering. When comparing strings, JavaScript goes
over the characters from left to right, comparing the Unicode codes one by
one.

Other similar operators are >= (greater than or equal to), <= (less than or
equal to), == (equal to), and != (not equal to).

console.log("Garnet" != "Ruby")
// → true

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 8/14

console.log("Pearl" == "Amethyst")
// → false

There is only one value in JavaScript that is not equal to itself, and that is NaN
(“not a number”).

console.log(NaN == NaN)
// → false

NaN is supposed to denote the result of a nonsensical computation, and as
such, it isn’t equal to the result of any other nonsensical computations.

Logical operators

There are also some operations that can be applied to Boolean values
themselves. JavaScript supports three logical operators: and, or, and not.
These can be used to “reason” about Booleans.

The && operator represents logical and. It is a binary operator, and its result
is true only if both the values given to it are true.

console.log(true && false)
// → false
console.log(true && true)
// → true

The || operator denotes logical or. It produces true if either of the values
given to it is true.

console.log(false || true)

// → true
console.log(false || false)
// → false

Not is written as an exclamation mark (!). It is a unary operator that flips the
value given to it—!true produces false and !false gives true .

When mixing these Boolean operators with arithmetic and other operators, it
is not always obvious when parentheses are needed. In practice, you can
usually get by with knowing that of the operators we have seen so far, || has

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 9/14

the lowest precedence, then comes && , then the comparison operators (> , == ,
and so on), and then the rest. This order has been chosen such that, in typical
expressions like the following one, as few parentheses as possible are
necessary:

1 + 1 == 2 && 10 * 10 > 50

The last logical operator we will look at is not unary, not binary, but ternary,
operating on three values. It is written with a question mark and a colon, like
this:

console.log(true ? 1 : 2);

// → 1
console.log(false ? 1 : 2);
// → 2

This one is called the conditional operator (or sometimes just the ternary
operator since it is the only such operator in the language). The operator uses
the value to the left of the question mark to decide which of the two other
values to “pick”. If you write a ? b : c , the result will be b when a is true
and c otherwise.

Empty values

There are two special values, written null and undefined , that are used to
denote the absence of a meaningful value. They are themselves values, but
they carry no information.

Many operations in the language that don’t produce a meaningful value yield
undefined simply because they have to yield some value.

The difference in meaning between undefined and null is an accident of
JavaScript’s design, and it doesn’t matter most of the time. In cases where you
actually have to concern yourself with these values, I recommend treating
them as mostly interchangeable.

Automatic type conversion

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 10/14

In the Introduction, I mentioned that JavaScript goes out of its way to accept
almost any program you give it, even programs that do odd things. This is
nicely demonstrated by the following expressions:

console.log(8 * null)
// → 0
console.log("5" - 1)
// → 4
console.log("5" + 1)
// → 51
console.log("five" * 2)
// → NaN
console.log(false == 0)

// → true

When an operator is applied to the “wrong” type of value, JavaScript will
quietly convert that value to the type it needs, using a set of rules that often
aren’t what you want or expect. This is called type coercion. The null in the
first expression becomes 0 and the "5" in the second expression becomes 5
(from string to number). Yet in the third expression, + tries string
concatenation before numeric addition, so the 1 is converted to "1" (from
number to string).

When something that doesn’t map to a number in an obvious way (such as
"five" or undefined) is converted to a number, you get the value NaN .
Further arithmetic operations on NaN keep producing NaN , so if you find
yourself getting one of those in an unexpected place, look for accidental type
conversions.

When comparing values of the same type using the == operator, the outcome
is easy to predict: you should get true when both values are the same, except
in the case of NaN . But when the types differ, JavaScript uses a complicated
and confusing set of rules to determine what to do. In most cases, it just tries
to convert one of the values to the other value’s type. However, when null or
undefined occurs on either side of the operator, it produces true only if both
sides are one of null or undefined .

console.log(null == undefined);
// → true

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 11/14

https://eloquentjavascript.net/00_intro.html

console.log(null == 0);
// → false

That behavior is often useful. When you want to test whether a value has a
real value instead of null or undefined , you can compare it to null with the
== or != operator.

What if you want to test whether something refers to the precise value false?
Expressions like 0 == false and "" == false are also true because of
automatic type conversion. When you do not want any type conversions to
happen, there are two additional operators: === and !== . The first tests
whether a value is precisely equal to the other, and the second tests whether it
is not precisely equal. Thus "" === false is false, as expected.

I recommend using the three-character comparison operators defensively to
prevent unexpected type conversions from tripping you up. But when you’re
certain the types on both sides will be the same, there is no problem with
using the shorter operators.

Short-circuiting of logical operators

The logical operators && and || handle values of different types in a peculiar
way. They will convert the value on their left side to Boolean type in order to
decide what to do, but depending on the operator and the result of that
conversion, they will return either the original left-hand value or the right-
hand value.

The || operator, for example, will return the value to its left when that value
can be converted to true and will return the value on its right otherwise. This
has the expected effect when the values are Boolean and does something
analogous for values of other types.

console.log(null || "user")
// → user
console.log("Agnes" || "user")
// → Agnes

We can use this functionality as a way to fall back on a default value. If you
have a value that might be empty, you can put || after it with a replacement

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 12/14

value. If the initial value can be converted to false, you’ll get the replacement
instead. The rules for converting strings and numbers to Boolean values state
that 0 , NaN , and the empty string ("") count as false, while all the other
values count as true. That means 0 || -1 produces -1 , and "" || "!?"
yields "!?" .

The ?? operator resembles || , but returns the value on the right only if the
one on the left is null or undefined, not if it is some other value that can be
converted to false . Often, this is preferable to the behavior of || .

console.log(0 || 100);
// → 100
console.log(0 ?? 100);
// → 0
console.log(null ?? 100);
// → 100

The && operator works similarly but the other way around. When the value to
its left is something that converts to false, it returns that value, and otherwise
it returns the value on its right.

Another important property of these two operators is that the part to their
right is evaluated only when necessary. In the case of true || X , no matter
what X is—even if it’s a piece of program that does something terrible—the
result will be true, and X is never evaluated. The same goes for false && X ,
which is false and will ignore X . This is called short-circuit evaluation.

The conditional operator works in a similar way. Of the second and third
values, only the one that is selected is evaluated.

Summary

We looked at four types of JavaScript values in this chapter: numbers, strings,
Booleans, and undefined values. Such values are created by typing in their
name (true , null) or value (13 , "abc").

You can combine and transform values with operators. We saw binary
operators for arithmetic (+ , - , * , / , and %), string concatenation (+),
comparison (== , != , === , !== , < , > , <= , >=), and logic (&& , || , ??), as well

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 13/14

as several unary operators (- to negate a number, ! to negate logically, and
typeof to find a value’s type) and a ternary operator (?:) to pick one of two
values based on a third value.

This gives you enough information to use JavaScript as a pocket calculator
but not much more. The next chapter will start tying these expressions
together into basic programs.

◂ ● ▸ ?

27/06/2024, 18:43 Values, Types, and Operators :: Eloquent JavaScript

https://eloquentjavascript.net/01_values.html 14/14

https://eloquentjavascript.net/02_program_structure.html
https://eloquentjavascript.net/00_intro.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/02_program_structure.html

